

PERFORMANCE ANALYSIS OF METASEARCH ENGINE

NGUYEN MINH KHOA
1

1
Department of computer science and information engineering, National Taiwan University of Science and Technology,

Taiwan

E-MAIL: m9815806@mail.ntust.edu.tw

Abstract:
Search engines are the most useful tool for searching

information on the rapidly expanding World Wide Web

(WWW). In recent years, many search engines have been

created to help web user finding desired information (e.g

Google, Yahoo, Bing…). The fact that the search engines are

providing top results that are very different from each other,

if using only one search engine, internet searchers might be

missing some important information. A metasearch engine is a

system that provides unified access to multiple existing search

engines, it allows integrating answer provided by different

search engines, compare rank positions, provide advanced

search features on the top of commodity search engines. In

this paper, we build a simple meta-search engine to compare

the results of different search engines. In addition, we also

compare the time to retrieve data serially with the time to

retrieve data in parallel.

Keywords:
Metasearch; world wide web; xml ; distributed

information retrieval; Web;

1. Introduction

The World Wide Web has become an enormous

information resource in past several years. Finding desired

data is one of the most popular ways the web is employed.

Many search engines have been created to facilitate the

retrieval of web pages. Each search engine has a text

database that is defined by the set of documents that can be

searched by the search engine. The fact is different search

engines are providing top results are very different from

each other, then by using only one search engine, internet

searchers are potentially missing relevant results.

As a consequence, meta-search engine are relevant for

many reasons. Metasearch engine is a system that supports

unified access to multiple local search engines. It does not

maintain its own index on web pages but a sophisticated

metasearch engine often maintains characteristic

information about each underlying local search engine in

order to provide better service. When a metasearch engine

receives a user query, it first passes the query (with

necessary reformatting) to the appropriate local search

engines, and then collects (sometimes, reorganizes) the

results from its local search engines. In addition to the

potential of increased search coverage of the Web, another

advantage of such a metasearch engine over a

general-purpose search engine is that it is easier to keep

index data up to date as each local search engine covers

only a small portion of the Web. In addition, running a

metasearch engine requires much smaller investment in

hardware (computers, storages, ...) in comparison to

running a large general search engine such as Google which

uses thousands of computers.

There are several serious challenges to implement an

effective and efficient metasearch engine. Among the main

challenges, the database selection problem is to identify, for

a given user query, the local search engines that are likely to

contain useful documents for the query. The objective of

performing database selection is to improve efficiency as by

sending each query to only potentially useful search

engines, network traffic and the cost of searching useless

databases can be reduced. In order to perform database

selection well, a representative for each database needs to

be stored in the metasearch engine to indicate the contents

of the database.

In typical session of using metasearch engine, a user

submits a query to the metasearch engine through a user

friendly interface. The metasearch engine then sends the

user query to a number of underlying search engines.

Different component search engines may accept queries in

different formats. The user query may thus need to be

translated to an appropriate format for each local system.

After the retrieval results from the local search engines are

received, the metasearch engine merges the results into a

single ranked list and presents the merged result, possibly

only the top portion of the merged result, to the user.

By taking the data one by one from each search engine

serially, it will be very time consuming, especially when

there is so many data returned by the search engines. This

paper proposed a way to take the data in parallel. By taking

the data in parallel, the execution time will be increase

significantly, especially when the data is being processed

are too much. But using to many parallel machines will not

make it faster because of communication time from one to

another.

This paper builds a simple metasearch engine to

compare the retrieving result from three popular search

engines (Google, Yahoo, Bing), then we can know how

many results different search engines share with each other.

In addition, it also compares the retrieving time using serial

execution and parallel execution.

The rest of this paper is organized as follows. Section

2 describes where the datasets is taken.. In section 4

describes the system architecture. In section 4 provides the

experimental results. Finally, section 5 concludes the paper

with few remarks.

2. Datasets

The datasets are the main component to build meta-

search engine. These datasets are taken from 3 established

popular search engines, Google, Yahoo and Bing. Google

and Yahoo allow sending the http request directly to server

and get the result. While Bing requires the user registers for

unique application id, then using it to create http request.

Because of security reason, three search engines don‟t

allow sending the request continuously in a short time. The

http request for each search engines are shown bellow

Figure1: HTTP request format of search engines

3. System Architecture

The system is begun with the query input by users.

The users submit their queries and select desired search

engines among those configured in the system. This

information is interpreted by the local query parser that

re-writes queries in a format appropriate for each chosen

engine. HTTP retrievers modules handle the network

communications. As soon as search results are available,

the search result collector extracts the relevant information,

and format it in XML. Then the statistic and comparator

extracts all the links of results and compare those links of

three search engines. In addition, it calculates the execution

time and some other needed indices. Lastly, the result is

displayed to the user. The system architecture is illustrated

in figure 2.

Figure2: Meta-video search engine’s architecture

4. Experiments

The experiment is conducted by querying the

meta-search engine with different total results and each is

perform 10 times. The total results returned are 100, 200,

500. All experiments are performing on standard PCs.

Because the Internet speed is the main concern of this

experiment so the experiment is conducted when the

Internet speed is in the highest speed.

First, the experiment for query „computer‟ is

performed. The results are shown in figure3, figure4,

figure5 for 100, 200, 500 results, respectively.

Figure 3: Comparison of retrieving 100 results using query

“computer”

Figure 4: Comparison of retrieving 200 results using query

“computer”

Figure 5: Comparison of retrieving 500 results using query

“computer”

We can see that Google, Yahoo and Bing share only 14% of

their top 100 results, 8.5% of their top 200 results and 8.8%

of their top 500 results for query „computer‟. Yahoo and

Bing share much more than each of them with Google.

 Second, the experiment for top ten popular search

terms is performed. The results are shown in figure6,

figure7 for 100, 200 results, respectively.

Figure 6: Comparison of retrieving 100 results using top 10

popular queries

Figure 7: Comparison of retrieving 200 results using top 10

popular queries

 We can see that Google, Yahoo and Bing share only

26% of their top 100 results, 25% of their top 200 results

for top ten search terms. Again, Yahoo and Bing share much

more than each of them with Google.

The third experimental is comparison between serial

execution and parallel execution. We use the query “flower”

and calculate the retrieving time of three search engines.

The results are shown in figure8, figure9 for 100, 200

results, respectively. We can see that using parallel

execution, the retrieving times are less than using serial

execution, especially when the results are 100 results, the

parallel execution takes about 2.1 second and the serial

execution is 3.6 second. When the results are 200 results,

the parallel execution takes about 4.0 second and the serial

execution is 6.4 second. The explanation for these results is

very obvious, it‟s because the execution are done in parallel

instead of serial. Then parallel execution using three HTTP

connections to get the data simultaneously. Therefore,

parallel execution is executed faster than serial execution.

We also see that Google requires only 0.22 second to get

100 results for query „flower‟, while Bing and yahoo

requires 1.27 and 2.1 second, respectively.

Figure 1: Comparison of retrieving time 100 results for

query 'flower'

Figure 2: Comparison of retrieving time 200 results for

query 'flower'

5. Conclusions

By building a simple meta-search engine, we perform

comparison results from different search engines

successfully. Google, Yahoo and Bing share only 25% for

top 10 popular queries. Yahoo and Bing share more than

each of them with google because Bing uses the algorithm

of Yahoo. In addition, Parallel Meta-search engine is also

presented. It‟s very practical to build the meta-search

engines based on parallel execution. The reason for using

this parallel is because the data are fetch in real time from

the search engines providers, thus we don‟t need to manage

the database and in other hand we can get a reasonable time

to show the results to the users, yet up to date. It is must be

consider not to use over parallel machines than it needs,

because the communication time between the query

dispatcher and the nodes must also be consider.

As far as future work is concerned, an obvious next

step would be building my own merger and ranker module.

By using some algorithm for raking result (eg. Borda count,

Markov chain based method…), we can provide the most

relevant results to user.

Acknowledgements

 This project is part of Advance Database System

course in National Taiwan University of Science and

Technology is taught by Professor Yi-Leh WU.

References

[1] W. Meng, C. Yu, and K. Liu. Building efficient and

effective metasearch engines. In ACM Computing

Surveys, 2002.

[2] M. E. Renda and U. Straccia. Web metasearch: Rank

vs. score basedrank aggregation methods. In SAC,

2003.

[3] Zonghuan Wu, Weiyi Meng, Clement Yu, and

Zhuogang Li. Towards a Highly-Scalable and

Effective Metasearch Engine . Proc. of Tenth World

Wide Web Conference (WWW10), Hong Kong, May

2001, pp.386-395.

[4] Bing Developer Center. [Online] Available at:

http://www.bing.com/developers

[5] Yahoo! Developer Network. [Online] Available at:

http://developer.yahoo.com/

[6] Google Web Search API. [Online] Available at:

http://code.google.com/more/

2113.9

1270.2

224.6

3608.7

2115.9

0
500

1000
1500
2000
2500
3000
3500
4000

Yahoo Bing Google Serial Parallel

T
im

e
(m

il
is

ec
o

n
d

s)

Retrieving time for 100 results

3591.9

2244.6

591.6

6428.1

3965.9

0

2000

4000

6000

8000

Yahoo Bing Google Serial Parallel

T
im

e
(m

il
is

ec
o

n
d

s)

Retrieving time for 200 results

http://www.bing.com/developers
http://www.bing.com/developers
http://developer.yahoo.com/
http://www.blinkx.com/devnet/
http://www.blinkx.com/devnet/

