
Generating relational schema from xml schema
using xml binding and object relational mapping
gandhi m t manalu
Department of Computer Science and Information Engineering, Nation Taiwan University of Science and Technology,
E-MAIL: M9715811@mail.ntust.edu.tw

Abstract:

XML is one of the most common media used to represent data transmitted on the Internet, however relational database is still the most widely chosen media to store the data. Hence, methods to transform XML data from and to relational database are usually used to accommodate the process. In order for those methods to successfully operated, a relational schema that comply with the structure of the XML being stored must be built by referring to the corresponding XML Schema. A relational schema can be generated from an XML Schema by first generating entity codes for each elements described in the XML Schema using XML Binding, and later generates relational schema for each of the entity codes by using Object Relational Mapping. This method can successfully generate a relational schema based on the given XML Schema. The generated relational schema includes the tables and its corresponding fields and data types, and relationship between each table.
Keywords:

XML Schema; Relational Schema; XML Binding; Object Relational Mapping;
1. Introduction
The flexibility of XML data has made it as one the most preferred media to transmit data on the Internet. There is no limitation on how data structured and stored in an XML, hence to ensure data consistency and integrity, an XML Schema should be created to define set of rules that later can be used to validate an XML data. These rules may vary depends on the needs, such as the data type that can be stored in an element and the length of the data to be stored.
While transmitting data on the Internet is mostly done using XML data, storing and managing the data is still done using relational database. Thus, a mechanism to bridge these two media is made. The mechanism usually consists of translating XML data into its relational data form, and converting relational data into XML data.
Since XML data’s restriction is stored in an XML Schema, a relational schema that can be used to build the relational database that will be used to store the XML data can be generated by referring to the corresponding rules stated in the XML Schema.
There are several types of XML Schemas, but in this paper, XML Schema published as a W3C recommendation will be used. This XML Schema is usually referred as XSD.

Several approaches have been conducted to achieve the goal of generating relational based on given XML Schema. Most of them use more theoretical approach by employing automata theory in the translation process, such as one conducted by Hongwei Sun, Shusheng Zhang, Jingtao Zhou, Jing Wang‎[1]. In this paper, a more practical approach will be conducted by implementing XML Binding to bind the XML Schema to Entity Class, and Object Relational mapping to map the Entity Class to the relational database.
The remainder of this paper is organized as follows: Section 2 describes the XML Binding concept along with a brief explanation of JiBX, the chosen technology to implement the concept, and an example of binding process. Section 3 describes the Object Relational Mapping concept along with a brief explanation of Hibernate, the chosen technology to implement the concept, and an example of mapping process. Section 4 describes the experiments of generating relational schema using XML Binding and Object Relational Mapping and the results of the experiment. Finally, Section 5 gives the conclusions.

2. XML Binding
XML Binding is the binding of XML documents to objects designed especially for the data in those documents. This allows applications (usually data-centric) to manipulate data that has been serialized as XML in a way that is more natural than using the DOM‎[2]‎. XML binding will be used to generate entity code that will then be mapped to a relational database.
There are several technologies that can be chosen to implement XML Binding. In this paper, JiBX technology is chosen because it has the flexibility in the mapping. A sample XML Schema provided in the JiBX package will be used as the example in this paper with a modification to remove irrelevant contents. The content of the XML Schema is as depicted in Figure 1.
	<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://jibx.org/starter" elementFormDefault="qualified" targetNamespace="http://jibx.org/starter">

 <xs:simpleType name="shipping">

 <xs:restriction base="xs:string">

 <xs:enumeration value="STANDARD_MAIL"/>

 <xs:enumeration value="PRIORITY_MAIL"/>

 <xs:enumeration value="INTERNATIONAL_MAIL"/>

 <xs:enumeration value="DOMESTIC_EXPRESS"/>

 <xs:enumeration value="INTERNATIONAL_EXPRESS"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="item">

 <xs:sequence/>

 <xs:attribute type="xs:long" use="required" name="id"/>

 <xs:attribute type="xs:int" use="required" name="quantity"/>

 <xs:attribute type="xs:float" use="required" name="price"/>

 </xs:complexType>

 <xs:complexType name="address">

 <xs:sequence>

 <xs:element type="xs:string" name="street1"/>

 <xs:element type="xs:string" name="street2" minOccurs="0"/>

 <xs:element type="xs:string" name="city"/>

 <xs:element type="xs:string" name="country" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute type="xs:string" name="state"/>

 <xs:attribute type="xs:string" name="postCode"/>

 </xs:complexType>

 <xs:complexType name="customer">

 <xs:sequence>

 <xs:element type="xs:long" name="customerNumber"/>

 <xs:element type="xs:string" name="firstName"/>

 <xs:element type="xs:string" name="lastName"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element type="tns:order" name="order"/>

 <xs:complexType name="order">

 <xs:sequence>

 <xs:element type="xs:long" name="orderNumber"/>

 <xs:element type="tns:customer" name="customer"/>

 <xs:element type="tns:address" name="billTo"/>

 <xs:element type="tns:shipping" name="shipping"/>

 <xs:element type="tns:address" name="shipTo" minOccurs="0"/>

 <xs:element type="tns:item" name="item" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute type="xs:date" use="required" name="orderDate"/>

 <xs:attribute type="xs:date" name="shipDate"/>

 <xs:attribute type="xs:float" name="total"/>

 </xs:complexType>

</xs:schema>

Figure 1. An example of XML-Schema that will be used to generate the Relational Schema.
2.1. XML Binding using JiBX
Class used to generate entity classes for each complex type described in an XML Schema by using JiBX technology is CodeGen, located in org.jibx.schema.codegen package, stored in jibx-tools.jar. The only required argument is the name of file XML which will be use to generate entity classes‎[3].
Entity class is an ordinary class with the following specifications: all property is private, each property has methods to get and set the value of its elements, and it provides a zero argument constructor. Entity classes generated from XML Schema are only from elements which are of complex type. For XML Schema depicted in Figure 1, the resulting entity classes are as follows: Item, Address, Customer, and Order.
3. Object Relational Mapping
Object relational mapping is a technique to map objects in object oriented paradigm with relational databases‎[4].
There are several technologies available to implement the object relational mapping. In this paper, Hibernate will be used as a tool to automatically generate relational database based on the given entity classes.
	package org.jibx.starter;

public class Customer

{

 private long customerNumber;

 private String firstName;

 private String lastName;

 public long getCustomerNumber() {

 return customerNumber;

 }

 public void setCustomerNumber(long customerNumber) {

 this.customerNumber = customerNumber;

 }

 public String getFirstName() {

 return firstName;

 }

 public void setFirstName(String firstName) {

 this.firstName = firstName;

 }

 public String getLastName() {

 return lastName;

 }

 public void setLastName(String lastName) {

 this.lastName = lastName;

 }

}

Figure 2. Customer Entity Class generated from XML Schema

3.1. Object Relational Mapping using Hibernate
To generate a relational database based on the given entity class using Hibernate, the following files must be generated: mapping files for each of the entity classes, hibernate configuration file, and the generator class‎[5].
A mapping file is used to specify the corresponding table in a database that relates with an entity class. The class to be mapped, the name of related table in the database, name of the columns and their types, and the primary key are usually defined in this file.
Information about database type, host, username, password, drivers, and most imporantly the name of mapping files to be mapped are defined in hibernate configuration file. If the property hbm2ddl.auto is set to true then the hibernate engine will automatically generate the corresponding tables based on the mapping files specified in the hibernate configuration file.
	<hibernate-mapping>

 <class name="org.jibx.starter.Customer" table="Customer">

 <id name="customerNumber" column="CUSTOMERNUMBER">

 <generator class="native"/>

 </id>

 <property name="firstName" column="FIRSTNAME"/>

 <property name="lastName" column="LASTNAME"/>

 </class>

</hibernate-mapping>

Figure 3. Mapping File for Customer Entity Class

The generator class is a class that will be used to create a session and execute a transaction that will trigger the hibernate engine to generate the tables that are corresponded to the entity class as specified in the hibernate configuration file.
	<hibernate-configuration>

 <session-factory>

<property name="connection.driver_class">
com.mysql.jdbc.Driver</property>

<property name="connection.url">
jdbc:mysql://localhost:3306/ads</property>

 <property name="connection.username">root</property>

<property name="connection.password">
novahasianku</property>

 <property name="connection.pool_size">1</property>

<property name="dialect">
org.hibernate.dialect.MySQLDialect</property>

<property name="current_session_context_class">
thread</property>

<property name="cache.provider_class">
org.hibernate.cache.NoCacheProvider</property>

 <property name="show_sql">true</property>

 <property name="hbm2ddl.auto">create</property>

 <mapping resource="org/jibx/starter/Customer.hbm.xml"/>

 <mapping resource="org/jibx/starter/Item.hbm.xml"/>

 </session-factory>

</hibernate-configuration>

Figure 4. A sample of hibernate configuration file

Once the corresponding tables have been generated in the database, the relational schema can be easily retrieved using tool provided by the DBMS used.
An element which uses other elements should be mapped into tables with relationship among them. For example, “order” element uses “customer” and “address” elements, so the expected relational schema must contain relation between table ORDER with CUSTOMER and ADDRESS. In Hibernate, this can be done by specifying the type of the object being linked and the linked objects, an example of this mapping file is shown in Figure 5.

	<hibernate-mapping>

 <class name="org.jibx.starter.Order" table="Order">

 <id name="orderNumber" column="ORDERNUMBER">

 <generator class="native"/>

 </id>

 <one-to-many name="customer" class="

org.jibx.starter.Customer" column="cid"/>
 // other object datatype
 </class>

</hibernate-mapping>

Figure 5. A sample of hibernate mapping file for mapping objects
4. Experiments and Result

A simple tool is created to automate all the process. In general, the tool provides the following features: generate entity classes, choose entity classes to be mapped, specify the database used as the host, map the entity class into tables, and finally dump the table structure into relational schema.
XML Schema depicted in Figure 1 has 4 complex types: item, address, customer, and order. Hence, the JiBX generates 4 entity classes. In practice, JiBX will generate 5 files, where the other one is for shipping element. But it is not as an entity class, since it doesn’t fulfill the requirement of an entity class. It is generated because even though shipping element in the XML Schema is in a form of simple type, but it represents an enumeration, which can be interpreted as a new data type.
An element with a complex type that uses other complex type such as “order” element will be automatically mapped to a table that is linked to its corresponding table in the database by using Hibernate.
Validating the resulting relational schemas is done by filling out the generated tables and export each tables as XML file by using export feature provided by the RDBMS and later validate the generated XML to the originating XML schema. Since the XML data are generated for each table, and then the XML schema needs to be decomposed into a more simple form that contains only element whose XML data needs to be validated.
5. Conclusions
Generating relational schema from a given XML Schema using XML Binding and Object Relational Mapping is relatively straightforward to implement. Using JiBX for XML Binding and Hibernate for Object Relational Mapping has successfully achieved the goal of generating relational schema from an XML Schema.
Acknowledgements

This paper is prepared as an assignment of Advanced Database System course under Prof. Yi-Leh WU supervision at the Department of Computer Science and Information Engineering, NTUST.
References
[1] Hongwei Sun, Shusheng Zhang, Jingtao Zhou, Jing Wang: Mapping XML-Schema to Relational Schema. EurAsia-ICT 2002: 322-329.
[2] Bourret, R. (2009). XML Data Binding Resources. Retrieved May 26, 2009, from Consulting, writing, and research in XML and databases Web site: http://www.rpbourret.com/xml/XMLDataBinding.htm.
[3] Dennis Sosnoski. (2009). JiBX 1.2, Part 2: XML schema to Java code. Retrieved May 26, 2009, from Java Technology resources on Java standards and technology Web site: http://www.ibm.com/developerworks/java/tutorials/j-jibx2.

[4] Scott W. Ambler. Mapping Objects to Relational Databases: O/R Mapping In Detail. Retrieved May 26, 2009, from Techniques for Successful Evolutionary/Agile Database Development Web site: http://www.agiledata.org/essays/mappingObjects.html.
[5] Emmanuel Bernard. (2008). Java Persistence with Hibernate. Retrieved May 26, 2009, from Relational Persistence for Java and .NET Web site: https://www.hibernate.org/397.html.

