
*Extended Version of A Conceptual Schema Based XML Schema with Integrity Constraints Checking Paper, IEEE
Computer Society Proceeding of ICHIT 2008, Daejeon-Korea

A CONCEPTUAL SCHEMA BASED ON RDFS-OWL AND CONSISTENCY
CONSTRAINT CHECKING WITH XQuery*

OVILIANI YENTY YULIANA

Department of Computer Science and Information Engineering,
National Taiwan University of Science and Technology, Taipei, Taiwan

E-MAIL: d9915801@mail.ntust.edu.tw

Abstract:
This project assignment proposes a novelty (1) how to

define Object Role Modeling (ORM) constraints as a
conceptual schema using Resource Description Framework
Schema (RDFS) and Web Ontology Language (OWL) in
RDF/XML syntax as a semantic web; (2) how to define ORM
constraints using XQuery for checking consistency XML data
with the constraints. All defined RDFS, OWL, and XQuery
are well validated. In addition, the defined XQueries can be
used for checking consistency XML data with the constraint.
Several ORM constraints still are not supported by RDFS and
OWL. Current XQuery syntax can not be used to define
several ORM constraints.

Keywords:
ORM Constraints; RDFS; OWL; XQuery

1. Introduction

Nowadays XML is gradually accepted as a standard
for representing, accessing, and exchanging data through
internet applications. However, accessing and exchanging
XML data typically are not completed with XML schema
(XSD) and semantic information. In addition, data in XML
databases as a text file is very easy to modify. Without XSD
and semantic information, it is very difficult to keep
consistency data in XML databases. Therefore, it is
impossible to produce quality information.

There are several researches as a background of this
project. Reengineering XML Databases using Object Role
Modeling (ORM) [1] as conceptual data model into the fifth
normal form is conducted by [2]. In addition, [3] extended
the revise engineering method using concept single and
multi association rules. Furthermore, [4] proposed how to
cover ORM constraints on forward engineering that do not
supported by XSD syntaxes. In 2001, Berners-Lee proposed
a semantic web as an extension of the current web in which
information is given well-defined meaning, better enabling
computers and people to work in cooperation [1]. As far as
I know, there is not a tool that has a feature to forward

engineering using ORM as a data model.
The project assignment aims are to (1) define the

forward engineering ORM constraints that still are not
covered by [4] using Resource Description Framework
Schema (RDFS) and Web Ontology Language (OWL) [5]
into RDF/XML format by example; (2) define XQuery [6,7]
for checking consistency constraints XML data by example;
(3) validate RDF/XML and XQuery using a validator; and
(4) conduct experiment to evaluate XQuery.

2. Conceptual schema based on RDFS-OWL

ORM has rich constraints [1], i.e. uniqueness,
mandatory or optional, value (data type, data pattern,
enumeration, and range), set-comparison (subset, equality,
and exclusion), subtype (partition, exclusive, and
exhaustive), frequency, and ring (reflexive, symmetric,
transitive, irreflexive, asymmetric, antisymmetric, and
intransitive). XSD (physical level) syntaxes can only define
uniqueness, mandatory or optional, and value constraints.
However, XSD does not support set-comparison, subtype,
frequency, and ring constraints [4].

RDFS and OWL are needed to define set-comparison,
subtype, frequency, and ring constraints in a conceptual
level in order to support semantic web application. In this
project, RDF/XML syntax will be used to define the ORM
constraints based on RDFS and OWL. RDFS only supports
subtype constraint in context sub class and super class
definition. To define partition, exclusive, exhaustive, and
ring constraints, OWL is needed. A foundation layer for the
semantic web is shown in Figure 1.

Figure 1. The foundation layer for the semantic web

The project will use ORM meta data that produced by
[2,3,4] as shown in Figure 2. In general, the meta data is
revered engineering into RDF/XML as shown in Figure 3.
RDF/XML is divided into header, class elements, and
property elements that is divided into object properties and
data type properties. To define class elements, Constraint,
ObjectType, RoleType, and SubtypingObject tables are
needed. Role and RoleCosntraint tables are needed to
define object properties. At last, ConstraintValue table is
needed to define data type properties. The main concern
project is how to define ORM constraints that were not
covered by [4]. Therefore the detail syntax in RDF/XML
will not show in detail.

Constraint (ConstraintNr, ConstKindCode)
ConstraintValue (ConstraintNr, Value)
ObjectPredicate (ObjectTypeName, RoleNr)
ObjectType (ObjectTypeName, OTKindName, RefModeName)
Role (RoleNo, ObjectTypeName, PredicateName, PositionNr)
RoleConstraint (RoleNr, ConstraintNr)
RoleType (RoleNo, RoleType)
SubtypingObject (SubType, SuperType)

Figure 2. ORM meta data

� Header
� Class Elements

Constraint
ObjectType
RoleType
SubtypingObject

� Property Elements
� Object properties

Role
RoleConstraint

� Data type properties
ConstraintValue

Figure 3. RDF/XML general format

There are three ORM subtypes, i.e. partition, exclusive,
and exhaustive. Subtypes example can be shown in Figure
4, Figure 6, and Figure 8 respectively. Define every subtype
and super type at a class element. In addition, define
subClassOf super type (Academic) in every subtype class
element (e.g. Professor and SeniorLecturer). To define
exclusive subtype, add disjointWith tag at each exclusive
subtype class (SeniorLecturer) as show in Figure 5. To
define exhaustive subtype, add unionOf tag at super type
class element (Person) as show in Figure 7. To combine
exclusive and exhaustive constraints, i.e. partition, use
disjointWith and unionOf tags just discussed. For instance
see Figure 9.

ORM frequency constraint example is shown in Figure
10. It is defined using cardinality tag at Restriction in
class elements definition, e.g. see Figure 11. There are three
types ORM set-comparison constraint, i.e. subset, equality,

and exclusion. However, RDFS and OWL only support to
define a subset constraint. It defines using subPropertyOf
tag at InverseFunctionProperty on property element, i.e.
object property. The ORM subset constraint dan RDF/XML
subset constraint can be shown in Figure 12 and Figure 13
respectively. ObjectProperty Car.Drives is a subset of
ObjectProperty Person.Owns.

Figure 4. ORM diagram exclusive subtype constraint

Figure 5. RDF/XML exclusive subtype constraint

Figure 6. ORM diagram exhaustive subtype constraint

Figure 7. RDF/XML exhaustive subtype constraint

. . .
<owl:Class rdf:ID="Student">
 <rdfs:subClassOf rdf:resource="#Person"/>
</owl:Class>
<owl:Class rdf:ID="Lecturer">
 <rdfs:subClassOf rdf:resource="#Person"/>
</owl:Class>
<owl:Class rdf:ID="Person">
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Student"/>
 <owl:Class rdf:about="#Lecturer"/>
 </owl:unionOf>
</owl:Class>
. . .

. . .
<owl:Class rdf:ID="Academic">
 . . .
</owl:Class>
<owl:Class rdf:ID="Professor">
 <rdfs:subClassOf rdf:resource="#Academic"/>
</owl:Class>
<owl:Class rdf:ID=" SeniorLecturer ">
 <rdfs:subClassOf rdf:resource="#Academic"/>
 <owl:disjointWith rdf:resource="#Professor"/>
</owl:Class>
. . .

Figure 8. ORM diagram partition subtype constraint

Figure 9. RDF/XML partition subtype constraint

Figure 10. ORM diagram frequency constraint

There are seven ORM ring constraints, i.e. reflexive,
symmetric, transitive, irreflexive, asymmetric,
antisymmetric, and intransitive. However RDFS and OWL
do not support for defining AntiSymmetry, InTransitive,
and Acyclic constraints. In general, attribute domain and
range tag base on the same class element. Symmetric
constraint example is shown in Figure 14. Person object
type is defined on class element Person. Ring constraint
symmetric Friend is defined on ObjectProperty element
Friend with SymmetricProperty attribute. The RDF/XML
symmetric constraint Figure 14 can be shown in Figure 15.
In addition, transitive constraint is shown in Figure 16 and
RDF/XML is shown in Figure 17. To define RDF/XML

transitive similar with RDF/XML symmetric, only change
symmetric with TransitiveProperty attribute.

Figure 11. RDF/XML frequency constraint

⊆

M Fred
F Sue
F Tina

Fred 123BOM
Sue 272NCP

Fred 123BOM
Sue 272NCP
Tina 105ABC

Figure 12. ORM diagram subset constraint

Figure 13. RDF/XML subset constraint

. . .
<owl:Class rdf:ID="MalePatient">
 <rdfs:subClassOf rdf:resource="#Patient"/>
</owl:Class>
<owl:Class rdf:ID="FemalePatient">
 <rdfs:subClassOf rdf:resource="#Patient"/>
 <owl:disjointWith rdf:resource="#MalePatient"/>
. . .
</owl:Class>
<owl:Class rdf:ID="Patient">
. . .
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#MalePatient"/>
 <owl:Class rdf:about="#FemalePatient"/>
 </owl:unionOf>
</owl:Class>
. . .

. . .
<owl:ObjectProperty rdf:ID="Person.Owns">
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Car"/>
 <owl:inverseOf rdf:resource="#Car.Owns"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="Person.Drives">
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Car"/>
 <owl:inverseOf rdf:resource="#Car.Drives"/>
</owl:ObjectProperty>
<owl:InverseFunctionalProperty rdf:ID="Car.Owns">
 <rdfs:domain rdf:resource="#Car"/>
 <rdfs:range rdf:resource="#Person"/>
 <owl:inverseOf rdf:resource="#Person.Owns"/>
</owl:InverseFunctionalProperty>
<owl:InverseFunctionalProperty rdf:ID="Car.Drives">
 <rdfs:domain rdf:resource="#Car"/>
 <rdfs:range rdf:resource="#Person"/>
 <rdfs:subPropertyOf rdf:resource="#Person.Owns"/>
 <owl:inverseOf rdf:resource="#Person.Drives"/>
</owl:InverseFunctionalProperty>
. . .

. . .
<owl:Class rdf:ID="Stock">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#Stock.City"/>
 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">3
</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 . . .
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#Stock.DriveKind"/>
 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">2
</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>
. . .

Ann Ann
Ann Bill
Bill Ann

Figure 14. ORM diagram symmetric constraint

Figure 15. RDF/XML symmetric constraint

Ann Bill
Bill Colin
Ann Colin
David Ann
David Bill
David Colin

Figure 16. ORM diagram transitive constraint

Figure 17. RDF/XML transitive constraint

OWL does not support defining reflexive, irreflexive,
and asymmetric constraints. Therefore, OWL 2 must be
used. All defined RFD/XML must valid. However,
ALTOVA Semanticworks does not support to validate OWL
2. Manchester validator will be used, therefore reflexive,
irreflexive, and asymmetric constraints will be defined
using Manchester syntax. Reflexive constraint example can
be shown in Figure 18 and Manchester reflexive constraint

can be shown in Figure 19. Property characteristic
ReflexiveObjectProperty is used to define reflexive
constraint, for example see line 14 in Figure 19. Irreflexive
and asymmetric constraints can be defined using the same
way, just change the property characteristic with
IrreflexiveObjectProperty and AsymmetricObject
respectively.

Ann Ann
Ann Bill
Bill Bill

Figure 18. ORM diagram reflexive constraint

Figure 19. Manchester reflexive constraint

3 Consistency constraint checking with XQuery

The previous section discussed how to define semantic
of ORM constraints as a documentation system. The
defined semantic of ORM constraints are used to people or
machine which cooperative work on web application can
better understanding each other. Another aim purpose in
this project is how to checking XML data consistency with
the defined constraint. Therefore XQuery will be used.
Generally XQuery syntax can be shown in Figure 20 [6,7].
There is a limitation in XQuery syntax so in this project
only define XQuery for several constraints.

XQuery for checking consistency example ORM
subset constraint in Figure 21 is shown in Figure 22.
XQuery for checking consistency example ORM subtype
constraint in Figure 8 is shown in Figure 23. In addition,
XQuery for checking consistency example ORM frequency
constraint in Figure 24 is shown in Figure 25. Moreover,

1. Prefix(:=<http://example.com/owl/families/>)
2. Prefix(otherOnt:=<http://example.org/otherOntologies/families/>)
3. Prefix(xsd:=<http://www.w3.org/2001/XMLSchema#>)
4. Prefix(owl:=<http://www.w3.org/2002/07/owl#>)
5. Ontology(<http://example.com/owl/families>
6. Declaration(NamedIndividual(:Ann))
7. Declaration(NamedIndividual(:Bill))
8. Declaration(Class(:Person))
9. Declaration(ObjectProperty(:knows))
10. Declaration(DataProperty(:FirstName))
11. ObjectPropertyDomain(:knows :Person)
12. DataPropertyDomain(:FirstName :Person)
13. DataPropertyRange(:FirstName xsd:string)
14. ReflexiveObjectProperty(:knows)
15. ClassAssertion(:Person :Ann)
16. ObjectPropertyAssertion(:knows :Ann :Ann))

. . .
<owl:Class rdf:ID="Person">
 . . .
</owl:Class>
 . . .
<owl:ObjectProperty rdf:ID=" AncestorOf">
 <rdf:type rdf:resource="&owl; TransitiveProperty"/>
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Person"/>
</owl:ObjectProperty>
. . .

. . .
<owl:Class rdf:ID="Person">
 . . .
</owl:Class>
 . . .
<owl:ObjectProperty rdf:ID="Friend">
 <rdf:type rdf:resource="&owl;SymmetricProperty"/>
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Person"/>
</owl:ObjectProperty>
. . .

XQuery for checking consistency example ORM irreflexive
constraint in Figure 26 is shown in Figure 27. At last,
XQuery for checking consistency example ORM
asymmetric constraint in Figure 28 is shown in Figure 29.

Figure 20. XQuery syntax in general

Figure 21. Another ORM diagram subset constraint

Figure 22. XQuery for checking subset constraint

Figure 23. XQuery for checking subtype constraint

Ovi Colin
Ann Bill
Bill Ann
Bill Colin
Ann Colin

Figure 24. Another ORM diagram frequency constraint

Figure 25. XQuery for checking frequency constraint

Figure 26. Another ORM diagram irreflexive constraint

Figure 27. XQuery for checking irreflexive constraint

Figure 28. Another ORM diagram asymmetric constraint

FLWORExpr ::= (ForClause | LetClause)+ WhereClause?
 OrderByClause? "return" ExprSingle
ForClause ::= "for" "$" VarName TypeDeclaration? PositionalVar? "in"
 ExprSingle ("," "$" VarName TypeDeclaration? PositionalVar?
 "in" ExprSingle)*
LetClause ::= "let" "$" VarName TypeDeclaration? ":=" ExprSingle
 ("," "$" VarName TypeDeclaration? ":=" ExprSingle)*
WhereClause ::= "where" ExprSingle

for $e in doc("IrreflexiveData.xml")/IrreflexiveData/Person
where $e/FirstName=$e/ParentOf
return
 <InvalidIrreflexive>
 {$e/FirstName}
 {$e/ParentOf}
 <Note>Invalid irrefelxive constraint</Note>
 </InvalidIrreflexive>

for $j in fn:distinct-values(
 fn:doc("OccurFreqData.xml")//Person/ParentOf)
let $p := fn:doc("OccurFreqData.xml")//Person
 [ParentOf = $j]
return
 if (fn:exists($p) and count($p/ParentOf)>2) then
 <InvalidMaxOccurece>
 <ParentOf> {$j} </ParentOf>
 <CoutParentOf> {fn:count($p/ParentOf)} </CoutParentOf>
 <Note>The occurrent frequency must be less than or equal to

two</Note>
 </InvalidMaxOccurece>
 else ()

for $j in fn:doc("SubTypeData.xml")//MalePatient
let $p := fn:doc("SubTypeData.xml")//Patient
 [Nr= $j/Nr and Code="M"]
return
if (fn:exists($p)) then()
else (
 <InvalidSubTypeMale>
 {$j/Nr}
 {$p/Code}
 <Note>Invalid Sub Type</Note>
 </InvalidSubTypeMale>
)

for $j in fn:doc("SubSetData.xml")//Drives
let $p := fn:doc("SubSetData.xml")//Owns
 [FirstName=$j/FirstName and RegNr=$j/RegNr]
return
if (fn:exists($p)) then()
else (
 <InvalidSubSet>
 {$j/FirstName}
 {$j/RegNr}
 <Note>Invalid Subset</Note>
 </InvalidSubSet>
)

Figure 29. XQuery for checking asymmetric constraint

4 Experiment and result

ALTOVA Semanticworks 2011 [8] was used to
validate RDF/XML syntaxes for the defined semantic ORM
conceptual level using RDFS and OWL. The experiments
show that all defined semantic ORM constraints are well
validated as shown in Figure 30. The defined XQueries will
be validated and executed by ALTOVA XMLSpy 2011 [9].
All of the defined XQueries can give information about
inconsistency XML data with the constraint. For example,
see the table data Figure 26. The XQuery in Figure 27 is
run and give the information as shown in Figure 31. After
deletion the first row data, the XQuery will show the
information in Figure 32.

OWL Full �

Figure 30. Validated RDF/XML syntaxes

<InvalidIrreflexive>
<FirstName>Ann</FirstName>
<ParentOf>Ann</ParentOf>
<Note>Invalid irrefelxive constraint</Note>

</InvalidIrreflexive>

Figure 31. Information inconsistency irreflexive XML data

Figure 32. XML data consistent with irreflexive constraint

5. Conclusions

RDFS and OWL can be used to define ORM subtype,

frequency, subset, symmetric, and transitive constraints.
OWL 2 can be used to define ORM reflexive, irreflexive,
and asymmetric constraints. However, OWL 2 still can not
define ORM equality, exclusion, antisymmetry, intransitive,
and acyclic constraints. The defined subset, equality
exclusion, subtype, occurrence, irreflexive, and asymmetric
XQueries can be used for checking consistency XML data
with the constraints.

Acknowledgements

I wish to thank to Prof. Yi-Leh WU for his continuous
guidance, encouragement, patient, and support.

References

[1] Halpin T. A. Antony J. M. and Tony M., Information
Modeling and Relational Databases the Second Ed.,
Morgan Kaufmann, USA, 2008.

[2] Yuliana O. Y. and Suphamit C., “XML Schema
Re-Engineering Using a Conceptual Schema
Approach”, IEEE Computer Society Proceeding of
ITCC 2005 Conference, Las Vegas, pp. 255-260, April
2005.

[3] Yuliana O. Y. and Suphamit C., “Deriving Conceptual
Schema from XML Databases”, IEEE Computer
Society Proceeding of ACIIDS 2009 Conference,
Dong Hoi, pp. 40-45, April 2009.

[4] Yuliana O. Y. and Suphamit C., “A Conceptual
Schema Based XML Schema with Integrity
Constraints Checking”, IEEE Computer Society
Proceeding of ICHIT 2008 Conference, Daejeon, pp.
19–24, August 2008.

[5] W3C Recommendation (27 October 200p), OWL 2
Web Ontology Language Primer, retrieved at 17
October 2010, web site:
http://www.w3.org/TR/owl2-primer/.

[6] W3C Recommendation (14 December 2010), XQuery
1.0: An XML Query Language Second Edition,
retrieved at 18 December 2010, web site:
http://www.w3.org/TR/2010/REC-xquery-20101214/#
id-sequencetype-syntax.

[7] W3C Recommendation (14 December 2010), XML
Syntax for XQuery 1.0 (XQueryX) Second Edition,
retrieved at 18 December 2010, web site:
http://www.w3.org/TR/xqueryx/.

[8] ALTOVA SemanticWorks 2011, retrieved at 10
December 2010, web site:
http://www.altova.com/semanticworks.html.

[9] ALTOVA XMLSpy 2011, retrieved at 10 December
2010, web site: http://www.altova.com/xmlspy.html.

for $r in fn:doc("ASymmetricData.xml")/ASymmetricData/Person
let $a := fn:doc("ASymmetricData.xml")/ASymmetricData/Person
 [FirstName = $r/ParentOf and ParentOf = $r/FirstName]
return
 if (fn:exists($a)) then
 <InvalidASymmetric>
 {$r/FirstName}
 {$r/ParentOf}
 <Note>Invalid Asymmetric</Note>
 </InvalidASymmetric>
 else ()

