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a b s t r a c t 

Various malware and cyberattacks have arisen along with the proliferation of IoT devices. The evolving 

malware targeting IoT devices calls forth effective and efficient solutions to protect vulnerable IoT de- 

vices from being compromised. In this paper, we investigate the feasibility of a state-of-the-art graph 

embedding method, graph 2 v ec, for performing family classification for IoT malware, with promising re- 

sults reported. To further improve the generalization performance of the classifiers based on graph 2 v ec- 

extracted features, we propose two new mechanisms to improve the quality of feature representation. 

First, we unify user-defined function calls by reinterpreting the opcode sequences therein to better cap- 

ture the semantics of the function-call relationship in malware binaries. Then, we integrate literal infor- 

mation into the graph 2 v ec embedding of the function call graph to achieve better discriminant ability. To 

prove the effectiveness of the proposed scheme, we carried out performance comparison on a large-scale 

dataset containing more than 108K malware binaries collected from seven CPU architectures. The accu- 

racy rates obtained by five widely adopted classifiers on malware family classification are improved by 

2%, on average, by adopting the two proposed mechanisms. Specifically, when combined with the pro- 

posed approach, the support vector machine classifier obtained an accuracy rate of 98.88% on malware 

family classification, outperforming known function-call-graph (FCG)-based methods and previous work 

on static malware analysis. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

While the popularity of Internet of Things (IoT) devices has fa- 

ilitated digital life, it has also attracted various malware attacks, 

asting a shadow on digital security. In particular, the source code 

elease of malware programs such as Mirai has led to numerous 

alware variants, rendering the protection of IoT devices more 

hallenging ( Chaganti et al., 2022; Costin and Zaddach, 2018; Galal 

t al., 2015 ). A pressing need exists to devise effective and efficient 

echanisms to detect and categorize IoT malware to achieve re- 

iable protection for IoT devices ( Kuang et al., 2020; Kumar et al., 

022; Wazzan et al., 2021 ). 

Recent research suggests that when combined with static anal- 

sis, graph-feature-based approaches can successfully model mal- 

are behavior and achieve good prediction performance ( Alasmary 

t al., 2019; Muzaffar et al., 2022 ). The syntactic and semantic 

tructure of malware binaries can be represented as graphs at 

ifferent levels, e.g., function call graphs (FCGs) and control flow 

raphs (CFGs). Representations of malware programs as graphs 
∗ Corresponding author. 
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t

d

t

ttps://doi.org/10.1016/j.cose.2022.103060 

167-4048/© 2022 Elsevier Ltd. All rights reserved. 
sually yield complicated structures with overwhelming capacity, 

hich call forth an efficient transformation before it can be taken 

s input to a learning algorithm ( Vinayaka and Jaidhar, 2021 ). 

eanwhile, significant research progress has been made on the so- 

alled graph embedding techniques in the past few years. Graph 

mbedding algorithms ( Xu, 2021 ) can effectively convert high- 

imensional sparse graphs into low-dimensional, dense, and con- 

inuous vector spaces while preserving the semantics presented 

n the graph structures. With the learned vector representation, 

ode similarity in the original complex graph space can be eas- 

ly quantified in the embedded vector space using standard met- 

ics and then can be effectively exploited by subsequent learning 

lgorithms. Nevertheless, a systematic assessment of the feasibil- 

ty of applying state-of-the-art graph embedding methods for IoT 

alware analysis has yet to be performed. 

In this paper, we propose to apply the state-of-the-art method 

nown as graph 2 v ec ( Narayanan et al., 2017a ) to perform graph

mbedding for FCGs extracted from malware binaries. We propose 

wo mechanisms to enhance the discriminating information cap- 

ured by graph 2 v ec during graph embedding. First, we unify user- 

efined function calls by reinterpreting the opcode sequences in 

he malware binaries. This operation helps reduce the graph’s size 

https://doi.org/10.1016/j.cose.2022.103060
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.103060&domain=pdf
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nd enables more precise modeling of the function-call relation- 

hip. Second, we realize a new implementation of graph 2 v ec that 

ses function names to identify the vertices in the graph. Integrat- 

ng literal information into the graph embedding can capture more 

iscriminant information in the data and improve the conditional 

odels’ generalization performance. 

To evaluate the proposed malware classification scheme, we 

mplement five widely adopted classifiers, namely, random forest 

RF) ( Ho, 1998 ), k -nearest neighbors ( k NN) ( Hastie et al., 2009 ),

upport vector machine (SVM) ( Cortes and Vapnik, 1995 ), mul- 

ilayer perceptron (MLP) ( Haykin, 1999 ), and logistic regression 

LR) ( Hosmer and Lemeshow, 20 0 0 ). We carry out performance 

valuation on a large-scale dataset consisting of 108,616 malware 

amples compiled on seven different CPU architectures. The exper- 

mental results show that by adopting the proposed mechanisms, 

he accuracy rates of the evaluated classifiers on malware fam- 

ly classification are improved by 2% on average. Among the five 

valuated classifiers, SVM demonstrates the best performance and 

eached an accuracy of 98.88% when evaluated by 5-fold strat- 

fied cross-validation. It outperforms known FCG-based methods 

nd previous work of IoT malware analysis based on static features. 

The main contributions of this paper are summarized as fol- 

ows. 

• We present a feasibility study and performance evaluation of 

applying graph embedding methods to analyze IoT malware. 

• We propose a process to reinterpret UDFs corresponding to 

identical opcode sequences to enhance the semantics of FCGs. 

• We develop a new implementation of graph 2 v ec to account for 

the literal information of function names in the learning pro- 

cess. 

• We demonstrate the effectiveness of the proposed scheme us- 

ing extensive numerical studies on a large-scale benchmark 

dataset. 

The remainder of this paper is organized as follows. 

ection 2 reviews previous works related to malware anal- 

sis. Then, Section 3 introduces the motivation behind our 

esearch. Then, Section 4 elaborates the proposed scheme. In 

ddition, Section 5 evaluates the performance of the proposal. 

ection 6 discusses the limitations of the proposed scheme. 

inally, Section 7 concludes the paper. 

. Background and related work 

In this section, we introduce the background of IoT malware 

nd review previous work on IoT malware detection and classifi- 

ation. 

.1. IoT malware 

IoT devices provide considerable convenience to today’s digital 

ife. However, due to the resource constraint feature and the lack 

f user security awareness, IoT devices have become the most cap- 

ivating target of malware attacks. Among the numerous attacks 

hat harm IoT devices, IoT botnet is the most notorious. An IoT bot- 

et is a network of hijacked IoT devices infected by a botnet tool 

hat allows hackers to take control. Botnets can be abused to send 

ut spam or conduct attacks such as distributed denial of service 

DDoS) attacks. 

The most famous attack of IoT malware was the DDoS attack 

aused by Mirai ( Antonakakis et al., 2017; Marzano et al., 2018 ) 

n 2016, which targeted systems operated by the domain name 

ystem (DNS) provider Dyn. The provider was hit on 21 October 

nd remained under sustained assault for most of the day, bringing 

own sites including Twitter, Reddit, GitHub, Amazon.com, Netflix, 

nd many others in Europe and the US ( Guardian, 2022 ). Another 
2

ell-known malware family is Hajime ( Herwig et al., 2019 ), which 

earches for systems to infect by scanning the Internet for systems 

unning telnet on port 23/TCP and then tries to log in with default 

ccounts and passwords. Once logged in, it takes control of the de- 

ice and uses peer-to-peer connections for command and control. 

ther well-known IoT malware families include Dofloo and Xord- 

os, which have also launched many large-scale DDoS attacks in 

ecent years. 

.2. Previous work on malware analysis 

We surveyed related research on malware detection and family 

lassification to devise an effective and efficient scheme to protect 

oT devices from malware infection. Note that most reviewed ap- 

roaches were originally designed for malware protection on other 

latforms, such as Windows or Android. While some ideas can be 

eneralized to IoT malware analysis, others are not directly appli- 

able because of the CPU architecture diversity and resource con- 

traints enjoyed by IoT devices. For example, dynamic analysis –

xecuting binary programs in a sandbox environment to moni- 

or their run-time behavior – has been the most effective means 

or Windows/Android malware analysis. However, in regard to IoT 

alware, dynamic analysis tends to suffer difficulties in perform- 

ng consistent analysis on varying CPU architectures. Moreover, re- 

ource constraints on IoT devices tend to render on-device dynamic 

nalysis infeasible. Therefore, we focus on surveying the static- 

nalysis-based research on malware analysis. 

Static analysis consists of the analysis of a program without 

xecuting it. According to the characterizing features used in the 

tudy, the related work can be classified as binary-based, opcode- 

ased, graph-based, API-based, and others. Table 1 summarizes the 

elated work focusing on efficient static analysis. 

.2.1. Binary-based methods 

Executable files, a.k.a. binaries, are binary files containing ma- 

hine code for the computer to execute. As the form in which 

alware is distributed, a binary carries all necessary information 

hat enables the program’s execution in the target environment. 

or malware analysis, binary files are often treated as sequences 

f bytes. 

Raff et al. (2018) proposed the MalConv model, a convolutional 

eural network (CNN) that takes the sequences of bytes in binaries 

s a whole for portable executable (PE) malware detection. With 

 model trained over 40K training samples, they reported 94.0% 

ccuracy on a testing set containing more than 77K Windows PEs. 

Su et al. (2018) proposed extracting one-channel grayscale 

mages that are converted from binaries and then utilizing a 

ightweight CNN to classify IoT malware. They reported that the 

roposed system could achieve 94.0% accuracy for detecting DDoS 

alware from benignware and 81.8% accuracy for classifying be- 

ignware and two major malware families. 

Wan et al. (2020) devised an N-gram-based method to explore 

he discriminating information stored in the byte sequences at the 

ntry points of executable programs. They reported 99.96% accu- 

acy for malware detection and 98.47% accuracy for malware fam- 

ly classification on a dataset consisting of 111K benignware and 

11K malware samples. 

The related work listed above takes in byte sequences as input 

eatures for the learning models. It usually results in very fast fea- 

ure extraction, which can, in turn, enable fast malware protection. 

n the other hand, the byte sequences in the malware binaries are 

ubject to simple obfuscation techniques such as dead-code inser- 

ion and instruction substitution ( You and Yim, 2010 ). They may 

ield degenerated generalization performance for evolving IoT mal- 

are. Compared with binary features, the FCG features adopted in 
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his paper carry high-level behavioral information about the mal- 

are binary and are considered more robust against code obfusca- 

ion ( Naseer et al., 2021 ). 

.2.2. Opcode-based methods 

An opcode, abbreviated from operation code, is the portion of 

 machine language instruction specifying the operation to be per- 

ormed. Opcode sequences, as the output of many reverse engi- 

eering tools, carry fine-grained information about the execution 

ogic of the program and have been widely adopted as the basis 

or further analysis in related works. 

Kang et al. (2016) proposed a method based on N-grams over 

pcode sequences for Android malware detection and family clas- 

ification. Their approach supports automated feature coverage and 

liminates the need for domain knowledge to define the discrim- 

nating features. On a dataset of 2520 samples, SVM classifiers 

ielded a maximum F1-measure of 98% in both malware detection 

nd malware classification with N = 3 and N = 4 , respectively. 

Ban et al. (2019) proposed a multimodal analytical approach to 

haracterize IoT malware. They showed that opcode sequences ob- 

ained from static analysis and API sequences obtained by dynamic 

nalysis provide sufficient discriminant information to classify IoT 

alware with near-optimal accuracy. Their method achieved detec- 

ion accuracy of up to 100% for CPU-specific analysis on a dataset 

ontaining 9085 IoT malware samples collected from a honeypot 

ystem. 

Gülmez and Sogukpinar (2021) proposed a method based on 

he opcode graphs of executables. They extracted the node de- 

rees of self-connecting subgraphs of an opcode graph as the fea- 

ure representations of the sample. Their method achieved a detec- 

ion accuracy of up to 98% on a dataset of PE files containing 15K 

acked and unpacked samples. 

According to the survey in Naseer et al. (2021) , the opcode is 

he most widely adopted feature type for static analysis because 

f its low cost and strong discriminating nature. However, due to 

he extremely fine granularity of opcode, a graph representation 

ielded by opcode may show a size rendering fast analysis impos- 

ible. In the proposed scheme, the opcode sequences are organized 

s function calls – blocks of opcodes that realize particular func- 

ionalities. Integrating opcode as function calls can not only signif- 

cantly reduce the size for graph representation but also result in 

mproved modeling of the malware behavior at a higher level. 

.2.3. Graph-based methods 

The malicious behavior of malware can be characterized by cer- 

ain components in some representative structures obtained from 

alware binaries that reflect the execution logic of the program. In 

he literature, CFGs and FCGs are among the most widely adopted 

epresentative structures to serve this purpose. 

Alasmary et al. (2019) proposed deploying deep learning to the 

tructural features extracted from CFGs to train malware detec- 

ion models. They reported 99.66% accuracy for malware detec- 

ion and 99.32% for family classification on a dataset comprising 

K IoT samples. Structural features, including the number of nodes 

nd edges, density, centrality, and shortest path, were inputs to the 

NN model. 

Nguyen et al. (2020) proposed extracting information from 

rintable strings such as IP addresses, URLs, usernames, and pass- 

ords presented in an FCG and generated a printable string infor- 

ation graph (PSI graph). They then used a CNN to analyze the 

SI graph for detecting malware. They reported 98.7% accuracy on 

 dataset of 10,010 ELF IoT samples. 

Ou and Xu (2022) proposed a method called S3Feature, which 

xtends a function call graph by tagging sensitive nodes based on 

ensitivity evaluation. They reported an F1-measure of 97.71% for 
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alware detection when S3Feature is combined with other fea- 

ures. 

Xiao et al. (2020) proposed a graph re-partition algorithm based 

n an N-order subgraph to capture appropriate vibration behavior. 

hey applied an improved term frequency-inverse document fre- 

uency measure and information gain to learn the significant N- 

rder subgraphs to represent crucial malware behavior. They re- 

orted 99.75% accuracy for malware detection and 95.27% accuracy 

or malware family classification on a dataset of 4400 samples. 

Zhang et al. (2020) proposed combining features obtained from 

CG vectorization and other nongraph features for better general- 

zation performance. They reported 99.57% accuracy on a Windows 

alware dataset of 10,260 malware samples provided by Microsoft 

t Kaggle. 

Built upon the FCG representation of IoT malware samples, the 

roposed approach is closely related to the related work. The ma- 

or difference from previous work resides in the following facts: By 

xtracting the vector representations of the semantics in the graph 

hrough graph embedding, we can capture essential discriminating 

nformation from malware samples. The proposed methods can be 

pplied to most graph representations that can model the malware 

ehavior in syntactic or semantic means. 

.2.4. API-based methods 

Application programming interface (API), a software interface 

hat offers a service to other pieces of software, is used in high- 

evel programming to invoke system calls at the low level. It pro- 

ides a cost-effective and comprehensive middle layer to model 

he attack behavior of malware samples. Many successful ap- 

roaches to identifying and extracting malicious behavior are re- 

orted in the literature, ranging from techniques based on API call 

requency analysis ( Natani and Vidyarthi, 2013 ) to more sophisti- 

ated detection schemes based on exploiting the probabilities of 

ransitioning from API invocations ( D’Angelo et al., 2021 ). 

Ban et al. (2016) explored the potential of multimodal features 

o enhance the detection accuracy of Android malware. The ex- 

mined features included permissions, API calls, and meta-features 

uch as the category information and application package (APK) 

escriptions. Using a linear SVM classifier, they reported an accu- 

acy of 94.09% on an Android dataset composed of 78,649 apps 

sing the API call and app category features. 

The MaMaDroid detector introduced 

n Onwuzurike et al. (2017) abstracted the API calls performed by 

n Android app to their package names or families and built a 

odel from the sequences obtained from the call-graph Markov 

hains. Modeling the malware behavior using the transition prob- 

bilities between API calls improved robustness against evasion 

echniques. MaMaDroid reported an effective detection rate (up 

o 99% F1-measure) on a dataset of 8.5K benign Android apps 

nd 35.5K malicious Android apps collected over six years. It 

aintained its detection capabilities for long periods. 

As reported by the literature survey in Naseer et al. (2021) , 

s far as dynamic analyses are concerned, API sequences captured 

uring the program’s execution time are reported as the most sig- 

ificant data type that facilitates malware analysis. However, API 

alls are not as preferable as opcode and derived data in regard to 

tatic analysis. This is partially because capturing activity indica- 

ors finer grained than API, e.g., opcodes, are extremely expensive 

n dynamic analysis but comparatively affordable in static analysis. 

s a special type of high-level function call, APIs together with low 

evel function calls such as system calls and UDFs, constitute to the 

raph representation of FCGs analyzed in the proposed approach. 

.2.5. Other static features 

Many other types of information can be obtained from static 

nalysis and serve as behavioral indicators of malware. 
4 
Shahzad and Farooq (2012) proposed composing a feature set 

rom the header of Linux executable and linkable format (ELF) 

les. Using information gain as preprocessing filters, they selected 

83 attributes with high classification potential and performed the 

ata evaluation. They reported that the classical rule-based ma- 

hine learning algorithms and bio-inspired classifiers can reach 

ore than 99% detection accuracy on a Linux ELF dataset consist- 

ng of 1443 samples. 

Lee et al. (2020) proposed a method based on printable strings 

xtracted from the bodies of binaries. They reported that an SVM 

lassifier affiliated with feature selection could yield an accuracy 

f 98.36% on a large-scale dataset consisting of 120K IoT samples. 

hey also demonstrated the effectiveness of printable strings as an 

ffective f eature for cross-platform IoT malware classification. 

Most of the related work surveyed in this section creates vec- 

or representations for malware to be further analyzed by learn- 

ng algorithms. These vector representations can be combined 

ith the embedding vectors yielded by the proposed scheme 

or possible performance gain when affordable. In our experi- 

ent, we integrated a subset of the structural features introduced 

n Alasmary et al. (2019) as a reinforcement to the embedding vec- 

or yielded by the proposed approach for better malware classifi- 

ation performance. 

. Motivation 

In this section, we introduce the motivation behind our re- 

earch focusing on selecting the most appropriate graph represen- 

ation for malware and improving the semantics capturing capabil- 

ty for graph 2 v ec. 

.1. Graph representation for malware samples 

Existing graph-based malware analysis approaches typically in- 

olve a step to select a suitable graphical representation of the 

inaries as the basis for further analysis. CFGs ( Ngo et al., 2020; 

iang et al., 2022 ), FCGs ( Kawasoe et al., 2021; Li et al., 2021 ),

nd PSI graphs ( Nguyen et al., 2020 ) are among the most widely 

dopted graphical representations. 

For an accurate representation of the flow inside a program 

nit, CFGs capture the interaction of low-level operations during 

he program’s execution. A drawback of CFGs is that even bina- 

ies with moderate size yield extraordinarily large graphs, ren- 

ering the processing and analysis very time-consuming. On the 

ther hand, FCGs record only calling relationships between sub- 

outines during program execution. By ignoring the low-level op- 

rations, FCGs can yield a more concise graphical representation 

hile maintaining the essential information about the execution 

ogic of the program. 

PSI graphs extract information from printable strings such as IP 

ddresses, URLs, usernames, and passwords presented in an FCG. 

s most of these printable strings are composed at the program- 

ing phase, PSI graphs can serve as strong descriptors for binaries 

ompiled from the same source. Compared with FCGs, PSI graphs 

equire additional resources and time to extract and reorganize 

rintable strings. On the other hand, information other than print- 

ble strings in FCGs is ignored by PSI graphs, which may result in 

nwanted information loss. 

For the above given reasons, an FCG is chosen as our study’s 

raphical representation for IoT malware. Fig. 2 shows an ex- 

mple of an FCG extracted from a malware program. In the 

raph, the vertices represent functions, and the edges corre- 

pond to the caller-callee relationship between them. According 

o Li et al. (2021) , by representing the flow at the pertinent ab- 

tract level of function calls, FCGs can avoid obfuscation at the in- 

truction level and byte level. Moreover, in terms of IoT malware, 
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Fig. 1. Function-call graphs (partial) of a Mirai sample before and after the interpretation of user-defined functions. 

Fig. 2. Two similar user-defined functions in a Mirai sample. 
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CGs can capture CPU-independent semantics of the same mal- 

are. When a source file is compiled for different CPU architec- 

ures, the obtained binary files will be completely different because 

f the distinct instruction sets, but the FCGs may track their sim- 

larity at the function-call level. This information is beneficial for 

alware analysis across different CPU architectures. 

.2. Improvement to graph 2 v ec

We encountered two problems that may negatively impact the 

nalysis when applying graph 2 v ec ( Narayanan et al., 2017b ) to ex-

ract graphic embedding features from FCGs for IoT malware. 

User-defined functions (UDFs) are the first problem for FCGs. 

hile API and system calls are essential components of an FCG, 

DFs also contribute. Determined by the convention of the com- 

iler, UDFs are often assigned temporary identifiers for each run- 

ing instance on an ad hoc basis. Take the two UDFs shown in 
5 
ig. 1 as an example. The same UDF is assigned two different iden- 

ifiers based on memory location. Duplicated UDFs with distin- 

uishing names induce unnecessary computation costs and lead to 

ll-formed FCGs with erroneous semantic information. To solve this 

roblem, we propose a reinterpretation process for UDFs: UDFs 

re unified by investigating the opcode sequences representing the 

ow of the detailed operation executed therein. Then, the UDFs 

orresponding to the same opcode sequence are assigned an iden- 

ical universal identifier (UUID) so that the reuse of the same UDFs 

ill be accounted for in the analysis. Unifying the UDF names by 

einterpreting opcode sequences therein is expected to reduce the 

CG size and improve the prediction accuracy. 

The second problem is associated with the implementation of 

raph 2 v ec. Originally, graph 2 v ec was designed to handle abstract 

raphs so that no identifying information is stored in the graph 

ertices. Therefore, common implementations use the degree, i.e., 

he number of edges that are incident to the vertex, as identifiers 
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Fig. 3. Overview of the proposed IoT malware family classification scheme 
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Fig. 4. A partial list of function calls extracted from a Mirai sample. 
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n the graph. Such implementations render a significant loss of in- 

ormation in regard to the FCGs. In this paper, we implement a 

ew version of graph 2 v ec that uses function names to identify the 

ertices in the graph. Preserving semantics of function-call rela- 

ionships is expected to capture more discriminant information in 

he data and improve the prediction performance. 

. Methodology 

In this section, we elaborate the proposed approach for IoT 

alware analysis based on reinterpreted FCG obtained from static 

nalysis. As shown in Fig. 3 , the investigation is pursued in four 

teps: reverse engineering, reinterpreting UDFs, feature extraction, 

nd model building and evaluation. In the reverse engineering step, 

e use radare 2 (Radare2) to perform static analysis on the in- 

ut binaries and create FCGs. In the UDF reinterpretation step, we 

atch user functions by their opcode sequences and assign UUIDs 

o unique UDFs accordingly. In the feature extraction step, we 

erform feature extraction on the reinterpreted FCGs. Two types 

f features, namely, graph embedding features from an enhanced 

raph 2 v ec ( Wu et al., 2021 ) and structural features of graphs, 

re combined for better generalization performance. In the model 

uilding and evaluation step, we choose widely adopted classifiers 

o formulate prediction models for malware family classification. 

e use 5-fold stratified cross-validation to evaluate the perfor- 

ance of the models. 

.1. Reverse engineering 

As Linux is the most popular operating system installed on IoT 

evices, most malware arrives at victim devices in the form of ex- 

cutable and linkable format (ELF) files. To disassemble the ELF bi- 

aries, we adopt radare 2 , a complete framework for reverse engi- 

eering. After the static analysis, radare 2 outputs a CFG, which can 
6 
e interpreted as an FCG representing the calling relationship be- 

ween subroutines in the input binary. See Fig. 2 (a) for an example 

f a part of the FCG returned by radare 2 . 

.2. Reinterpreting user-defined functions 

During the analysis, we found that UDFs constitute a substan- 

ial portion of the vertices in the FCGs. Fig. 4 shows a fragmented 

napshot of the subroutines found in a Mirai sample. Based on 

he convention of the compiler, UDFs are often assigned identifiers 

ased on the address where they are stored. Subroutine names 

tarting with “fcn” correspond to the UDFs found in the binary. 

hese UDFs form groups (printed with colored fonts in the fig- 

re for better readability) that share strong similarities regarding 

umerical indicators such as size and arguments. A closer look into 

he opcode of the UDFs in the same group reveals that they are 
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Table 2 

Comparison of the size of FCGs before and after UDF reinterpretation. 

Malware Family 

Mirai Tsunami Dofloo Bashlite Xorddos Android Average 

Before 163.19 249.95 315.90 241.37 1153.21 468.27 431.98 

# Avg. vertices After 126.85 238.30 143.90 235.57 999.30 302.09 341.00 

Reduction (%) 22.27 4.66 54.45 2.40 13.35 35.49 21.06 

Before 418.74 616.98 671.70 554.36 3012.21 1236.18 1085.03 

# Avg. edges After 313.98 591.86 353.70 540.47 2591.11 738.12 854.87 

Reduction (%) 25.02 4.07 47.34 2.51 13.98 40.29 21.21 
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1 A rooted subgraph at vertex v i originates from v i and encompasses its neigh- 

borhood of a certain order. 
ssociated with the same opcode sequence. Therefore, the grouped 

DFs are identical subroutines but are assigned unique names by 

he compiler. 

Fig. 1 shows snapshots of two of these subroutines in the red 

roup of Fig. 4 . The opcode sequences highlighted in the red text 

oxes are the same for the two subroutines. In the example, except 

or the parameters after the command “jne” – equivalent to the 

jump” command on common CPU architectures – and “mov”, the 

arameters for the commands match exactly. 

This discordance in naming UDFs negatively impacts algorithms 

hat take function names as discriminating attributes for malware 

nalysis. We perform the following reinterpretation procedure for 

DF names to solve the problem. First, we collect all the UDFs in 

he dataset to form a set. Then, we obtain the opcode sequence 

or each of the UDFs. In this step, arguments of the opcodes are 

gnored not only to cover the special case for jump-like commands 

ut also to support free parameters in function calls. Then, using 

he opcode sequences as signatures, each of the unique UDFs in 

he set is assigned a UUID. Finally, the names of the UDFs in the 

ataset are replaced by their UUIDs in the later analysis. 

This reinterpretation procedure to treat UDFs as the same sub- 

outine if they perform the same operation in the program can 

enefit the analysis in the following aspects. First, it can solve the 

mbiguous naming issue caused by the compiler. Second, it can 

nify the same functions occasionally assigned different names in 

he source code. Then, it can result in an improved representation 

f semantics in the FCG, enhancing the generalization performance. 

inally, it can lead to a reduction in the scale of the graph, result- 

ng in improved learning and prediction efficiency. Take the UDFs 

n Fig. 2 as an example. The FCG in (b) obtained after reinterpreta- 

ion is much simpler than the FCG before reinterpretation in (a). 

Table 2 compares the FCGs built from the dataset introduced in 

ection IV-A before and after UDF reinterpretation. The table shows 

hat the reduction in FCG size achieved via UDF reinterpretation is 

ubject to variation according to the malware family. A maximum 

f a 54.45% reduction in vertex numbers and 47.34% reduction in 

dge numbers is achieved for Dofloo malware. The minimum of 

 2.40% reduction in vertex numbers and 2.51% reduction in edge 

umbers is achieved for Bashlite malware. The macro-average over 

ll examined malware families amounts to a 21.06% reduction in 

ertex number and 21.21% reduction in edge number. The experi- 

ent section will further investigate the impact of UDF reinterpre- 

ation on the effectiveness and efficiency of subsequent analysis. 

.3. Feature extraction 

The feature extraction step takes the reinterpreted FCGs as in- 

ut and returns vector representations of the graph as results. Fol- 

owing the idea in Wu et al. (2021) , we create two types of features

rom the graphs, namely, structural features and graph embedding 

eatures, to facilitate further analysis. 

.3.1. Graph structure features 

Graph properties that capture the structural information of an 

CG can serve as characterizing features for the corresponding bi- 
7 
ary. Features defined on nodes and edges of the graph are easy to 

btain and are inherently obtained in vector form. We adopt the 

eatures suggested by Alasmary et al. (2019) . 

Let an FCG, denoted as G = { V, E} , be a structure amounting to a

et of vertices, V , connected by a set of directed edges, E. Each ver-

ex, v i ∈ V , represents a function found in the binary. Each directed 

dge running from function v i to function v j , denoted as e i, j , indi-

ates that v i calls v j . Based on the above definition, we compute 

he following structural properties for all input FCGs. 

efinition 1. ( Numbers of vertices and edges ) The number of 

odes and edges, denoted as v = | V | and e = | E| , respectively, are

eneral characteristics used to describe the scale of an FCG. 

efinition 2. ( Number of connected components ) A connected 

omponent (CC) of graph G , denoted as S, is a subgraph in which

he vertices are connected by the edges in E. The number of CC is 

he cardinality of a set that contains all CCs of G , i.e., s = |{ S i }| . 
efinition 3. ( Density ) The density, d, of a directed graph G is de-

ned as the closeness of all its edges to the number of edges for a

ully connected graph with the same vertex set. Formally, 

(G ) = 

e 

(v − 1) 2 
. (1) 

.3.2. Graph embedding features 

The conventional graph properties listed above provide consol- 

dated structural information of an FCG. On the other hand, the 

emantics in the graph, i.e., the call relationships between subrou- 

ines, are not reflected in these features. We resort to a graph em- 

edding method, namely, graph 2 v ec, to explore the semantics in 

he graph. 

Graph 2 v ec, devised as a neural embedding framework to learn 

ata-driven distributed representations of arbitrary-sized graphs, 

njoys greater scalability, computing adaptability, and effective- 

ess than conventional graph-based algorithms. Because its em- 

eddings are learned in an unsupervised and task-agnostic manner, 

raph 2 v ec can provide vector representations of graphs for down- 

tream tasks such as data clustering and pattern analysis. The ef- 

ectiveness and efficiency of graph 2 v ec for IoT malware analysis is 

nvestigated in this study. 

Graph 2 v ec is inspired by doc2 v ec ( Le and Mikolov, 2014 ), which 

ses a specialized skipgram model to learn representations of word 

equences of arbitrary length as vectors of a predefined dimension. 

t then extends document embedding models to obtain graph em- 

eddings. Analogous to doc2 v ec, graph 2 v ec treats graphs as docu- 

ents composed of rooted subgraphs 1 , which, in turn, are treated 

s words. As graph 2 v ec was originally designed to treat abstract 

raphs that do not carry identifying information on the vertices, 

vailable implementations use vertex degree – the number of 



C.-Y. Wu, T. Ban, S.-M. Cheng et al. Computers & Security 125 (2023) 103060 

Fig. 5. Enhancing graph 2 v ec by integrating literal information as vertex labels. 
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5

f

b

dges that are incident to a vertex – to differentiate different ver- 

ices. Such an implementation leads to an unexpected loss of in- 

ormation with respect to FCGs. Fig. 5 (a) shows an example of a 

raph where the vertex degree (numbers on the vertices) is used 

s the identifier of the vertices. The left figure shows the initial 

tates of the graph when the vertex degree is assigned to the ver- 

ices as the initial label. To obtain the order-1 rooted subgraph of a 

ertex, graph 2 v ec performs a breadth-first search starting from the 

ertex and records the neighbors it has traversed. Take vertex 3 ©
t the top-left corner as an example. Its neighborhood consists of 

hree vertices, ( 2 ©, 3 ©, 4 ©), sorted in ascending order. Then, the label 

f the vertex and its listed neighbors are used as the new label of 

he order-1 subgraph. The right figure shows the result of order- 

 subgraph generation, where the unique labels are replaced by 

abeling numbers that have not been used for label compression, 

.g., a vertex with label ( 3 ©, 2 © 3 © 4 ©) is relabeled 5 ©. 

For an FCG, the function names of the subroutines carry essen- 

ial behavioral information of the binary. The above implementa- 

ion could result in a significant loss of semantics information from 

he FCG. In our proposed implementation, we use literal informa- 

ion of the subroutines, namely, function names, to label the ver- 

ices in the FCG. Fig. 5 (b) shows how graph 2 v ec is performed on

he same FCG as in Fig. 5 (a) but with the new labeling scheme. To

larify the difference, we use circled letters to indicate the function 

ames serving as vertex labels on the FCG. The left figure shows 

he initial states of the graph when function names are given to 

he vertices as initial labels. Note that vertices A ©, C ©, and D © are 

ssigned different labels, although they have the same degree of 

. After the first relabeling iteration, each vertex is assigned a 

ew label that encodes the identifying information at the vertex 

nd the function-call relationship within its order-1 neighborhood. 

ote that the two vertices labeled 5 © in Fig. 5 (a) are now assigned 

wo different labels, G © and I ©, as they carry different semantic 

nformation. 

Graph 2 v ec repeats the above relabeling process for m iterations 

o obtain the order- m rooted subgraphs around each vertex. Here, 

 determines how many consecutive subroutines are taken as the 

ontext for each vertex. As a very large m value may result in 

verfitting, we set m = 2 in the experiments following the rec- 

mmendation in Narayanan et al. (2017b) . Then, graph 2 v ec takes 

he set of all rooted subgraphs as its vocabulary and follows the 

oc2 v ec skipgram training process to learn a D -dimensional vector 

epresentation of each graph in the dataset. Finally, the graph em- 

edding and structural features are combined to form a (D + 4) - 

imensional vector as input for the subsequent classifiers. 

.4. Classification methods 

The vector representations yielded by graph 2 v ec can facilitate 

ost available machine learning methods. In this section, we select 
8 
ve widely adopted algorithms that can handle large-scale classi- 

cation tasks efficiently: RF, k NN, SVM, MLP, and LR. We construct 

redictive models for malware family classification. The selected 

lassifiers are briefly defined as follows. 

• RF is an integrated learning method for classification or regres- 

sion that operates by constructing a large number of decision 

trees during training. For classification tasks, the output of the 

RF is the class chosen by the majority of trees. 

• k NN is a learning-by-example approach that learns relevant fea- 

tures via local approximation. A binary is classified by a ma- 

jority vote of its k nearest neighbors. The results of k NN indi- 

cate how much discriminant information can be captured in the 

vector representation. 

• SVM is a supervised learning model that finds a hyperplane 

with maximized margin to distinguish samples from two 

classes. The SVM meets the needs for the malware detection 

task where samples are divided into two categories, i.e., benign 

and malicious. For the multi-class problem, as in malware fam- 

ily classification, we follow the one-against-all convention. For 

an M-class problem, we first construct M binary SVM classifiers, 

each of which separates one class from the rest. Then, we de- 

cide the predicted label by majority voting of all the classifiers. 

• MLP is a class of feed forward artificial neural networks trained 

using a supervised learning technique called back-propagation. 

MLP is good for differentiating data that are not linearly sepa- 

rable. 

• LR is one of the most popular machine learning algorithms for 

binary classification because of its simplicity and good perfor- 

mance on a wide range of problems. LR models the probability 

an event occurring by viewing the logarithm of the odds for the 

event as a linear combination of one or more independent vari- 

ables. LR can be generalized to multinomial logistic regression 

for multi-class classification ( Greene, 2012 ). 

. Experiments 

We evaluate the performance of the proposed approach com- 

ined with the selected classifiers on malware family classification 

o predict the category of malware binaries into known families. 

ur experiments are based on scikit-learn ( Pedregosa et al., 2011 ) 

mplemented with Python 3.7. All the experiments are imple- 

ented on a desktop PC with Ubuntu 16.04 LTS with the following 

pecifications: x86 64 Intel(R) Core(TM) i7-7820X CPU @3.60 GHz, 

 core, 128 GB DDR4 Memory. 

.1. Evaluation dataset 

As shown in Table 3 , we collected 108,616 malware binaries 

rom VirusTotal and labeled them with malware family names 

ased on the majority voting of the detection reports of major 
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Table 3 

Sample distribution among different categories and CPU architectures. 

ARM MIPS X86 SPARC X86-64 PPC UNKNOWN Total 

Mirai 19,537 10,224 7824 5048 1083 4859 4815 53,390 

Tsunami 424 375 1079 62 205 106 214 2465 

Dofloo 958 107 213 0 37 0 0 1315 

Bashlite 13,466 8731 8240 3163 3839 3465 5136 46,040 

Xorddos 2 0 485 0 5 0 0 492 

Android 3061 14 1425 0 413 1 0 4914 

Total 37,448 19,451 19,266 8273 5582 8431 10,165 108,616 
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nti-virus vendors. These samples belong to six malware families, 

amely, Mirai, Tsunami (Kaiten), Dofloo, Bashlite (Gafgyt), Xorddos, 

nd Android. VirusTotal reported that these malware samples were 

ollected from a variety of CPU architectures, including X86, MIPS, 

RM, SPARC, X86-64, and PowerPC (PPC). Samples without CPU ar- 

hitecture information are assigned to an UNKNOWN group. 

.2. Visualization 

To understand the data distribution, we use uniform manifold 

pproximation and projection (UMAP) ( McInnes et al., 2018 ) to vi- 

ualize the data in 2D embedding space. UMAP is a nonparamet- 

ic graph-based dimensionality reduction algorithm that consists of 

wo steps: (1) calculating the graph representation of the dataset 

nd (2) optimizing the low-dimensional embedding of the graph 

ia stochastic gradient descent. This approach is computation- 

lly efficient and can handle large-scale high-dimensional datasets. 

ig. 6 shows the 2 D visualization results for a subset of 1,200 mal-

are samples with 512 dimensions. Malware exhibits good sep- 

rability across families in the 2 D embedding space yielded by 

MAP, which implies good prediction performance in malware 

amily classification using the same feature representation. 

.3. Parameter tuning 

The generalization performance of machine learning algorithms 

elies heavily on the hyperparameters used to train the models. 

arameter tuning plays an important role in constructing models 

ith robust prediction performance. For the selected algorithms, 

e performed a grid search on the parameters using 5-fold strati- 

ed cross-validation on the training set of each run. The parameter 

etting that yielded optimal cross-validation performance was used 

o train a prediction model using the full training set. 

Fig. 7 shows an example of the parameter tuning procedure 

n dimension D of the FCG features. The blue line depicts the 

ighest cross-validation accuracy obtained by SVM with varying D 

arameters; the red line represents the required time for 5-fold 

ross-validation to be completed. The figure shows that the cross- 

alidation accuracy increases with D from 128 to 512 but starts to 

ecrease after D = 512 . Meanwhile, the training time to obtain the 

rediction models increases along with D . This result suggests that 

 = 512 is optimal to provide good prediction performance with a 

easonable time cost. 

Table 4 lists all the parameters subjected to a grid search pro- 

ess for parameter tuning. For RF, the number of decision trees in- 

olved in learning, T , impacts the performance and efficiency of 

he trained model. A larger T generally leads to better prediction 

erformance but increased computation time. 

For k NN, the number of nearest neighbors, k , determines the 

eighborhood size considered in the prediction. A larger k reduces 

he effect of noisy samples but blurs the class boundaries. 

For SVM, there are two performance-critical parameters: 

enalty coefficient, C, and width parameter, γ . C determines the 

olerance for training errors in the decision function. The higher C
9

s, the fewer training errors that can be tolerated, resulting in in- 

reased training accuracy but easier overfitting. The smaller the C

alue is, the more training errors can be tolerated, and the eas- 

er it is to obtain an underfitting classifier. The width parameter γ
omes with the most widely adopted radial-basis function (RBF) 

ernel function. It implicitly determines the data distribution in 

he new feature space induced by the RBF kernel. The choice of 

affects the number of support vectors in the decision function, 

hich in turn impacts the speed of training and prediction. We 

se a grid search to evaluate the effect of C and γ independent of 

ach other. This approach also enables fast evaluation of multiple 

arameter settings using a simple parallel implementation. 

For MLP, we adjust the hidden layer size, S, and the number of 

terations, I. In a neural network, S determines the complexity of 

ecision functions can be implemented and has a considerable im- 

act on performance. I provides a trade-off between training error 

nd the overfitting. 

Finally, for LR, a regularization term in the adopted implemen- 

ation, the sum of the squared coefficients multiplied by a parame- 

er λ ∈ R 

+ is added to the objective function. A suitable regulariza- 

ion coefficient λ can help to reduce the generalization error with- 

ut affecting the training error. The stopping criterion, τ , can be 

djusted to find the optimal point to stop training to obtain both 

ood accuracy and reasonable time cost. The examined grid values 

or all the tuned parameters are listed in the right-most column in 

able 4 . 

.4. Evaluation metrics 

In the evaluation phase, we adopt common evaluation metrics, 

amely, accuracy, recall, precision, and F1-measure, to assess the 

erformance of our proposed scheme. These metrics are defined 

ased on the following intermediate measures. 

• True positive (TP): samples correctly classified as positive. 

• False positive (FP): samples incorrectly classified as positive. 

• True negative (TN): samples correctly classified as negative. 

• False negative (FN): samples incorrectly classified as positive. 

Accuracy refers to the proportion of correct judgments: 

ccu racy = 

TP + TN 

n 

, (2) 

here n is the total number of samples used for evaluation. 

Precision is the probability that predicted positives are correctly 

lassified: 

 recision = 

T P 

T P + F P 
. (3) 

ecall is the probability of the samples in the positive class being 

lassified correctly: 

ecall = 

T P 

T P + F N 

. (4) 

he F1-measure is the weighted average of precision and recall: 

 1 _ measure = 

2 × (Recall × P recision ) 

Recall + P recision 

. (5) 



C.-Y. Wu, T. Ban, S.-M. Cheng et al. Computers & Security 125 (2023) 103060 

Fig. 6. Visualization of malware distribution using UMAP. 

Table 4 

Parameter tuning settings for classification algorithms. 

Parameter Classifier Physical Meaning Grid Value 

D All classifiers Feature dimension {128,256, ...,1024} 

T RF Number of trees {50,100, ...,500} 

k k NN Number of nearest neighbors {1,2, ...,9} 

C SVM Penalty parameter {10,100,1000} 

γ SVM The width of the RBF kernel {0.0001,0.001,0.01} 

S MLP Size of hidden layer {10,20, ...,100} 

I MLP Maximum number of epochs {10,20, ...,100} 

λ LR Regularization coefficient {0.1,1,10,100,1000} 

τ LR Tolerance as stopping criteria {0.0001,0.0001,0.001,0.01,1} 
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.5. Performance evaluation 

In this section, we report the results of four experiments to 

valuate the performance of the proposed scheme. We use graph 

mbedding features, the dimension determined via parameter tun- 

ng, and four graph structural features as the input attributes for 

he analysis. The first experiment verifies the feasibility of the rein- 

erpreted FCG and enhanced graph 2 v ec on malware family classifi- 

ation. In the second experiment, the dataset is divided into sub- 

ets based on the CPU architecture, and a performance comparison 

s conducted on CPU-specific subsets. The third experiment com- 

ares the performance of the proposed feature representation with 

he features introduced in related work. The last experiment com- 

ares the time efficiency of different approaches. All the reported 

esults are obtained from 5-fold stratified cross-validation. 
10 
.5.1. Malware family classification 

The first experiment aims to verify the feasibility of the pro- 

osed approach of classifying IoT malware samples into known 

alware families. Classifying malware with high accuracy can en- 

ble prevention, such as malware quarantining or user alerting, 

oon after the binary is downloaded to the device. To demonstrate 

he feasibility of the FCG with reinterpreted UDFs and the imple- 

entation of graph 2 v ec enhanced with literal information, we test 

he performance of the following settings. 

1. FCG combined with graph 2 v ec labeled with vertex degree 

(FCG ×G2V), 

2. FCG combined with graph 2 v ec labeled with literal information 

(FCG ×LiG2V), and 
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Table 5 

Performance evaluation on IoT malware family classification. 

Classifier Accuracy(%) Precision(%) Recall(%) F1-measure(%) Training time(s) Testing time(s) Parameter setting 

SVM 98.88 99.06 98.57 98.81 335.81 71.06 D = 516, c = 10, γ = 0.001 

MLP 98.70 98.65 98.46 98.55 66.62 0.07 D = 900, size = 100, iterations = 50 

RF 98.61 99.12 97.24 98.15 122.51 0.34 D = 900, n = 250 

k NN 98.60 98.56 98.46 98.55 0.03 36.72 D = 516, k = 1 

LR 98.04 98.41 97.04 97.67 80.81 0.03 D = 772, λ= 0.01, tol = 0.0001 

Fig. 7. Tuning parameter D using 5-fold cross-validation for SVM. D is selected from 

{128,256, ...,1024}. 
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3. Reinterpreted FCG with graph 2 v ec labeled with literal informa- 

tion (RFCG ×LiG2V). 

Fig. 8 shows the experimental results obtained under these 

hree settings. Among the charts in Fig. 8 , (a) to (e) show how

he classification accuracy varies with the feature dimension for 

he five selected classifiers. Chart (f) summarizes the results of the 

VM classifiers in chart (d), which yielded the best performance. 

s the results obtained from the 5 selected classifiers show simi- 

ar trends, we take the results from the SVM classifiers, as shown 

n (d) and (f), as an example for discussion. (d) shows that the 

anking order of the three settings remains the same while the di- 

ension parameter changes from 132 to 1,028. RFCG ×LiG2V (red 

ine) maintains the top ranking for all dimensions, followed by 

CG ×LiG2V (blue line) and FCG ×G2V (green line) in descending 

rder of classification accuracy. FCG ×LiG2V outperforms FCG ×G2V 

y a large margin. When D = 516 , FCG ×LiG2V improves the ac-

uracy of FCG ×G2V from 97.48% to 98.57%, indicating that inte- 

rating literal information into learning can yield substantial im- 

rovement in the discriminating ability for the embedding fea- 

ures. RFCG ×LiG2V further improves upon the classification per- 

ormance of FCG ×LiG2V by a substantial margin. When D = 516 , 

FCG ×LiG2V yields a classification accuracy of 98.88%, suggesting 

hat reinterpreting UDFs in the graph helps to enhance the seman- 

ic information captured by graph 2 v ec. Furthermore, (d) indicates 

hat RFCG ×LiG2V and FCG ×LiG2V yield high accuracy (98.80% and 

8.46% at D = 132 , respectively) with comparable lower dimen- 

ional embeddings, and the performance appears to be very sta- 

le with varying dimensions. On the other hand, FCG ×G2V re- 

uires comparatively high dimensional embeddings to achieve its 

est performance (97.68% accuracy obtained at D = 1 , 028 ). Similar 

bservations can be made about the results in (a), (b), (c), and (e) 

btained from the other four selected classifiers. 
11 
Table 5 summarizes the evaluation results of all examined clas- 

ifiers, and the selected parameter settings are shown in the right- 

ost column. All the classifiers yielded near-optimal results with 

n accuracy greater than 98.00%. SVM achieved the highest accu- 

acy of 98.88%, while RF, k NN, and MLP had slightly lower accu- 

acy. LR yielded an accuracy of 98.04%, the weakest of the five clas- 

ifiers. Because RFCG ×LiG2V outperformed the other two settings 

y a large margin, all the results reported in the table are obtained 

sing RFCG ×LiG2V. 

As a summary of the first experiment on IoT malware classifica- 

ion for all examined classifiers, we can summarize the feasibility 

tudy’s results as follows. 

1. Integrating literal information of the subroutine names in the 

graph 2 v ec model substantially improve the prediction accuracy. 

2. Reinterpreting UDFs in the FCGs leads to further improvement 

in the prediction accuracy for FCG ×LiG2V. 

.5.2. CPU-specific performance evaluation 

To reinterpret the UDFs, we used the associated opcode se- 

uence to identify subroutines with the same functionality. Be- 

ause different CPU architectures adopt different instruction sets, 

DF reinterpretation works only for IoT malware compiled on the 

ame CPU architecture. Therefore, better classification performance 

s expected if IoT malware family classification is performed on a 

ataset with all samples collected from a uniform CPU architec- 

ure. In the second experiment, we divided the dataset into seven 

ubsets containing malware samples compiled on the same CPU 

rchitecture. Then, an analysis following the steps in the first ex- 

eriment was performed on these seven subsets ( Table 5 ). 

Table 6 shows the results for IoT malware family classification 

or each CPU architecture. We report only the results obtained 

y RF and SVM for better readability: k NN, MLP, and LR showed 

lightly inferior generalization performance compared to RF and 

VM. For IoT malware family classification, SVM yielded accuracy 

reater than 98.92% on MIPS, X86, and SPARC at D = 516 . For two

f the other four remaining CPU architectures, ARM and PPC, SVM 

lso achieved accuracy close to 98.92%. SVM yielded inferior per- 

ormance only on X86-64 and UNKNOWN. Although slightly lower 

han that of SVM, RF also achieved an accuracy greater than 98.64% 

n 5 of the 7 CPU architectures. 

We investigated why the classifiers showed comparatively low 

ccuracy on X86-64 and UNKNOWN. A simple explanation in the 

ase of X86-64 is that samples collected on this CPU architecture 

omplied on a much wider range of Linux distributions. The in- 

reased sample variance renders the classification more difficult. 

n the other hand, the subset collected on UNKNOWN contained a 

ariety of CPU architectures, but the sample size is reduced con- 

iderably compared with that of the full dataset. Moreover, the 

istinct instruction sets on different CPU architectures also cast a 

hadow on the efficacy of FCG reinterpretation. These two factors 

endered the classification tasks more difficult for the UNKNOWN 

ubset. 

.5.3. Performance comparison with related work 

In the third experiment, we compare the proposed approach 

ith selected approaches in related work. As reviewed in Section 2 , 
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Fig. 8. Performance comparison between RFCG ×G2V, FCG ×LiG2V, and FCG ×G2V. 

12 
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Table 6 

Performance evaluation on CPU-specific malware family classification. 

CPU-architecture Classifier Accuracy(%) Precision(%) Recall(%) F1-measure(%) 

ARM RF 98.64 92.31 89.90 91.02 

SVM 98.85 98.85 98.32 98.57 

MIPS RF 99.03 87.14 84.19 85.31 

SVM 99.10 98.80 98.72 98.75 

X86 RF 98.89 99.36 98.90 99.13 

SVM 98.92 99.17 99.05 99.10 

SPARC RF 99.08 98.70 92.39 95.07 

SVM 99.12 98.84 94.76 96.47 

X86- 

64 

RF 97.61 94.17 89.39 91.41 

SVM 97.85 93.52 92.73 93.05 

PPC RF 98.69 93.72 89.66 91.49 

SVM 98.80 93.43 90.62 91.77 

UNKNOWN RF 97.26 97.57 90.61 93.59 

SVM 97.91 97.71 95.95 96.75 
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ifferent types of features associated with static malware analysis 

re studied in the literature. We select approaches that are easily 

daptable for IoT malware classification. Specifically, we implement 

he graph-based features introduced by Alasmary et al. (2019) , 

he features based on binary header information presented by 

hahzad and Farooq (2012) , the N-gram features obtained from op- 

ode sequences introduced by Kang et al. (2016) , and the graph 

eatures based on opcode sequences presented by Gülmez and 

ogukpinar (2021) . Note that this experiment aims to evaluate the 

iscriminating ability of a certain type of static feature not to 

earch for the classification model that gives optimal prediction 

erformance. Therefore, we choose to implement the five widely 

dopted classifiers introduced in Section 4.4 based on these fea- 

ures to conduct a fair and general comparison. More specialized 

lassification algorithms could work extraordinarily well on one or 

ore feature types; searching for such optimal combinations is be- 

ond the scope of this work. In this experiment, we used a shuffled 

ubset of 10K malware examples for training and a shuffled sub- 

et of 10K for testing. The reported results are obtained via 5-fold 

tratified cross-validation. 

Table 7 shows the results obtained from each type of fea- 

ure for all the selected classifiers. The prediction performance is 

easured in terms of accuracy, precision, recall, and F1-measure. 

ote that the samples are subject to a severely skewed distribu- 

ion among different malware families. The reduction in sample 

ize of the testing set casts a shadow on criteria other than ac- 

uracy because the macro average over the six classes favors re- 

ults in small classes. In the following, we use accuracy as the 

ain performance criterion. Although other measures are sub- 

ect to significant variation compared with the previous experi- 

ents, the comparison results adhere to those obtained from ac- 

uracy. As shown in the table, the features based on graph the- 

ry from Alasmary et al. (2019) yielded greater than 96.64% ac- 

uracy for 4 of 5 classifiers; they produced a comparatively low 

ccuracy of 91.61% for LR. The features extracted from ELF head- 

rs from Shahzad and Farooq (2012) and the opcode-based fea- 

ures from Kang et al. (2016) yielded stable accuracy above 95.13% 

or all five classifiers. The features learned from opcode graphs 

rom Gülmez and Sogukpinar (2021) obtained a very high accuracy 

f 98.42% with RF. Meanwhile, it yielded a relatively low accuracy 

f 88.82% with LR and an extremely low accuracy of 47.85% with 

LP. Thus, the performance of opcode-graph-based features is not 

lways stable and may not be suitable for certain classifiers. 

Under the RFCG ×LiG2V setting, the proposed graph embedding 

eatures yielded the best performance in IoT malware classification 

98.89% accuracy with SVM, 85.0% precision with RF, 84.76% re- 

all with MLP, and 84.83% F1-measure with SVM). This outstanding 

erformance compared with that of existing methods proves that 
a

13 
einterpreted FCG with graph 2 v ec labeled with literal information 

aptures essential discrimination information for IoT malware fam- 

ly classification. 

.5.4. Time efficiency comparison 

In this subsection, we compare the time efficiency of the pro- 

osed method with related work. As summarized in Table 8 , we 

ivide the malware classification process into reverse engineering, 

eature extraction, (model) training, and prediction. The time used 

or reverse engineering accounts for applying radare 2 to perform 

tatic analysis on a malware binary. The time used for feature ex- 

raction accounts for all the time spent transforming the static 

nalysis log into a numerical vector ready to be input to the classi- 

er. In particular, for the proposed scheme, the time to obtain the 

raph representation of an FCG, reinterpret the UDFs, and perform 

raph embedding is integrated into the feature extraction time. 

he training time constitutes the time cost for building a classifier 

odel with all training samples. We report the average time used 

o build the classifiers at all steps of the 5-fold cross-validation as 

raining time. Note that as the mechanism for parameter tuning 

s not directly comparable for different classification algorithms, 

e exclude the time spent on parameter tuning from the train- 

ng time. The testing time is the time it takes to apply a model 

o predict the class label for a test instance based on the vector 

epresentation of the sample. 

The second column in Table 8 reports the time spent on reverse 

ngineering for all compared methods. Because the features intro- 

uced in Shahzad and Farooq (2012) can be directly extracted from 

LF headers, it does not need a reverse engineering step. On the 

ther hand, advanced feature types are generated based on opcode 

equences for the other four approaches. Therefore, for these ap- 

roaches, reverse engineering is required before feature extraction. 

n the evaluation dataset, the average time to perform reverse en- 

ineering on a single file using radare 2 is 1.8623 s, a substantial 

omputational overhead for malware classification. 

The third column in Table 8 reports the time spent on fea- 

ure extraction. We can see that the features extracted from the 

LF headers as introduced in Shahzad and Farooq (2012) are very 

ime efficient, with an average time cost of 0.0620 s per file. 

he N-gram extracted from the opcode sequence as introduced 

n Kang et al. (2016) also works efficiently on IoT malware with 

n average time cost of 0.0128 s per file. The feature introduced 

n Gülmez and Sogukpinar (2021) is extracted from a condensed 

raph presentation of the opcode sequences, yielding an average 

ime cost of 0.1417 s per file. Because computation-intensive fea- 

ures such as the shortest path length of the CFGs are considered, 

he structural features introduced in Alasmary et al. (2019) require 

n average feature extraction time of 1.1566 s per file. The aver- 
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Table 7 

Performance comparison with previous work based on static features. 

Related work Feature Classifier Accuracy(%) Precision(%) Recall(%) F1-measure(%) 

Shahzad and 

Farooq (2012) 

ELF header SVM 97.39 81.54 81.38 81.42 

MLP 96.94 81.35 79.54 80.32 

RF 97.55 83.55 80.73 81.91 

k NN 95.13 81.00 78.08 79.19 

LR 95.53 81.64 77.00 78.64 

Avg. 96.51 81.42 79.35 80.30 

Alasmary et al. (2019) Graph theory SVM 97.78 83.95 82.56 83.24 

MLP 96.64 81.38 82.50 81.89 

RF 97.50 83.95 82.01 82.91 

k NN 97.61 83.25 82.22 82.72 

LR 91.61 76.96 71.55 73.68 

Avg. 96.23 81.90 80.17 80.89 

Kang et al. (2016) Opcode SVM 96.78 59.51 60.22 59.47 

MLP 96.59 59.68 60.08 59.48 

RF 97.02 59.58 60.68 59.81 

k NN 96.50 58.61 60.16 59.08 

LR 96.31 62.01 60.05 60.88 

Avg. 96.64 59.88 60.24 59.74 

Gülmez and 

Sogukpinar (2021) 

Opcode graph SVM 94.34 83.91 77.58 80.27 

MLP 47.85 6.84 14.29 9.25 

RF 98.42 84.28 82.63 83.43 

k NN 96.82 81.68 81.31 81.47 

LR 88.82 61.07 64.26 62.12 

Avg. 85.25 63.56 64.01 63.31 

RFCG ×LiG2V Graph embedding SVM 98.91 85.00 84.66 84.83 

MLP 98.78 84.86 84.76 84.81 

RF 98.59 85.00 83.13 84.04 

k NN 98.59 84.69 84.34 84.50 

LR 98.40 84.30 84.70 84.49 

Avg. 98.65 84.77 84.32 84.53 

Table 8 

Time efficiency comparison with previous work based on static features. 

Related work Rev. eng. (per file) Feat. extr. (per file) Classifier Training Prediction (per file) MTTD (per file) 

SVM 5.6182 2 . 22 × 10 −3 0.0642 

MLP 12.6789 1 . 43 × 10 −4 0.0621 

RF 0.2219 2 . 06 × 10 −4 0.0622 

k NN 0.0050 3 . 26 × 10 −3 0.0653 

Shahzad and 

Farooq (2012) 

- 0.0620 

LR 5.8607 1 . 39 × 10 −4 0.0620 

SVM 1.1986 8 . 50 × 10 −4 3.0197 

MLP 16.4680 9 . 96 × 10 −5 3.0190 

RF 0.9083 2 . 55 × 10 −4 3.0191 

k NN 0.0024 2 . 84 × 10 −3 3.022 

Alasmary et al. (2019) 1.8623 1.1566 

LR 0.9842 8 . 22 × 10 −5 3.0190 

SVM 9.4033 6 . 86 × 10 −3 1.8820 

MLP 147.5743 3 . 21 × 10 −4 1.8754 

RF 6.4611 3 . 49 × 10 −4 1.8754 

k NN 0.0490 4 . 69 × 10 −3 1.8798 

Kang et al. (2016) 1.8623 0.0128 

LR 6.1600 1 . 57 × 10 −4 1.8753 

SVM 477.4096 1 . 75 × 10 −1 2.179 

MLP 11.7092 1 . 17 × 10 −2 2.0157 

RF 2.6422 2 . 14 × 10 −4 2.0042 

k NN 0.2682 4 . 76 × 10 −3 2.0088 

Gülmez and 

Sogukpinar (2021) 

1.8623 0.1417 

LR 69.9998 1 . 30 × 10 −4 2.0041 

SVM 1.3124 1 . 14 × 10 −3 2.4830 

MLP 2.1390 5 . 57 × 10 −5 2.4820 

RF 2.9778 2 . 40 × 10 −4 2.4821 

k NN 0.0032 2 . 73 × 10 −3 2.4846 

RFCG ×LiG2V 1.8623 0.6196 

LR 2.8083 5 . 27 × 10 −5 2.4820 

Note: All numbers are in seconds. 
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ge feature extraction cost for RFCG ×LiG2V is 0.6196 s per file. 

onsidering that it integrates a subset of the features introduced 

n Alasmary et al. (2019) together with the graph embedding fea- 

ures extracted by graph 2 v ec, the implementation is computation- 

lly efficient. 

The training time to build a classification model is determined 

y factors such as the dimension of the feature vectors, the data’s 

eparability, and the algorithm’s optimization strategy. As shown 
14 
n the table, for the sake of employing an ensemble of fast linear 

lassifiers to perform the classification, RF performs fast training 

or all feature settings. All RF models are built within less than 

0 s. SVM, MLP, and LR are subject to strong variation from a few 

econds to a few hundred seconds, mainly due to the feature rep- 

esentation’s change in dimension. As a special case, k NN adopts 

he so-called lazy learning strategy that does not require training 

 discriminate function from the training data. This lazy learning 
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cheme comes with a relatively expensive time cost for prediction 

nd a large space cost to keep all the training samples in mem- 

ry. Based on the vector representation obtained by RFCG ×LiG2V, 

ll five checked classification algorithms reported a fast training 

ime of less than 3 s. This is attributed to the strong capability 

f graph 2 v ec to capture essential discriminant information with a 

ery low feature dimension. 

As a key performance indicator for incident management, the 

ean time to detect (MTTD) is defined as the average time the 

etector takes to identify the threat successfully. The rightmost 

olumn in Table 8 reports the average MTTD, which is the time 

pent performing reverse engineering, feature extraction, and pre- 

iction for all evaluated approaches. A shorter MTTD indicates that 

sers suffer from disruptions for less time than with a longer 

TTD. As seen from the table, the time spent on reverse en- 

ineering and feature extraction constitutes the major part of 

TTD. Compared with other methods, the approach introduced 

n Shahzad and Farooq (2012) yielded a very short MTTD. The 

ther four approaches, which involve a reverse engineering step to 

btain the static analysis results, show comparable performance in 

erms of MTTD. In particular, the proposed approach reported an 

verage MTTD of approximately 2.5 s for all evaluated classification 

lgorithms. 

. Discussion 

In this section, we discuss the limitations of the proposed 

cheme and the application scenarios that can benefit from its high 

rediction performance. 

.1. Limitations of static analysis 

The proposed approach is based on reverse engineering IoT 

alware binaries to obtain FCGs to understand their behavior. 

ode obfuscation is frequently employed by malware attackers to 

inder such analysis ( Schrittwieser and Katzenbeisser, 2011 ). Ex- 

cutable computation, commonly with the help of software tools 

nown as runtime packers, is a process that compresses an exe- 

utable file and combines the compressed data with decompres- 

ion code into a single executable. When the compressed exe- 

utable is executed, the decompression code recreates the origi- 

al code from the compressed data and then passes the control. 

s reported in Aghakhani et al. (2020) , for the case of Windows 

ortable executables, packing is common not only in malware sam- 

les (75%) but also in benign samples (more than 50%). The good 

ews for IoT malware is that very few cases of obfuscated IoT mal- 

are have been observed thus far ( Wan et al., 2020 ). Therefore, we

elieve the proposed approach can be an efficient solution for IoT 

alware protection for the time being. Future work will cover an 

xtended study on the countermeasures of obfuscation techniques 

n IoT malware. 

.2. Application scenarios 

Note that the proposed scheme works on FCGs and the out- 

ut of advanced reverse engineering tools such as radare 2 . More- 

ver, obtaining the embeddings using reinterpreted FCGs may in- 

ur a prohibitive computation cost on a resource-constrained de- 

ice. Therefore, the application of the proposed scheme is possible 

nly on IoT devices with comparatively abundant resources, e.g., AI 

peakers and home routers. Another plausible application scenario 

f the proposed scheme is on a smart home cybersecurity hub that 

an provide overall protection of various internet-connected de- 

ices from attacks such as malware, stolen passwords, and identity 

heft. Finally, the proposed scheme can be applied at security op- 

ration centers of enterprises and research laboratories of security 
15 
endors. In these scenarios, extensive analysis of collected malware 

inaries must be performed with high accuracy to enable effective 

ountermeasure policies. 

. Conclusion 

In this paper, we propose a new scheme to apply the well- 

nown graph embedding approach, graph 2 v ec, to analyze IoT mal- 

are. To improve the generalization performance of the scheme, 

e first devise a preprocessing step that reinterprets the UDFs us- 

ng their associated opcode sequences to obtain refined seman- 

ics from the FCG. Then, we present an enhanced implementa- 

ion of graph 2 v ec that effectively integrates the literal informa- 

ion of the subroutine names in FCGs into the learned embed- 

ing. Finally, the graph embedding features from the proposed 

cheme are combined with graph structural features to facilitate 

raining models for IoT malware family classification. The effec- 

iveness and efficiency of the proposed scheme are evaluated by 

xperiments conducted on a large-scale benchmark dataset con- 

isting of more than 108K IoT malware samples. The experimental 

esults show that integrating literal information of the subroutine 

ames into the graph 2 v ec model can yield malware classification 

odels with high classification accuracy. Reinterpreting UDFs in 

he FCGs leads to further improvement, resulting in an SVM clas- 

ifier with a near-optimal accuracy of 98.88% for IoT malware fam- 

ly classification. We believe that promising solutions for IoT se- 

urity can be developed based on the findings presented in this 

aper. 
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