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Abstract—In the era of rapid network development, IoT
devices are being deployed more and more widely, and various
kinds of malware programs are gradually appearing at the
deployment level. As a widely adopted static analysis approach,
structure based analysis such as graph embedding can capture
the semantic features of malware binaries and has received
much research attention. In this paper, to further improve the
robustness of the graph embedding approaches to IoT malware
detection, we propose a novel method that incorporates both
local and global characterizing features extracted from Function-
Call Graphs (FCG) to perform the detection. The caller-callee
relationship represents the local semantic features, and the global
statistic feature represents the graph’s structural characteristics.
The performance of the proposed method is evaluated on a large-
scale dataset consisting of 112K malware and 89k benignware
samples collected from seven CPU architectures. It shows a 99%
accuracy on IoT malware detection, outperforming existing graph
embedding solutions. Moreover, when CPU architecture is taken
into consideration, the proposed method combined with support
vector machine and multilayer perception classifier can yield even
higher performance.

Index Terms—Cybersecurity, function call graph, graph em-
bedding, IoT malware, machine learning, static analysis

I. INTRODUCTION

The popularity of IoT applications that have enriched human
life has also attracted malware attacks that seek to breach
human safety and privacy for potential revenue. Identifying
malware and reducing its impacts becomes a critical topic
for both industrial and academic research [1]. Meanwhile, the
source code release of malware such as Mirai resulted in a
tremendous number of malware variants, which renders the
protection of IoT devices more challenging [2, 3]. By under-
standing the behavior of malware binaries using static analysis,
we want to elucidate the actions intentionally designed to harm
IoT devices and hence facilitate fast detection and mitigation
of the potential threats [4, 5].

Recently, the graph-feature-based approach has received
extensive research attention in the machine learning (ML)
field. In this approach, a graph that captures the semantics
of a sample is taken as the input to an ML algorithm []. As
a well-known example, graph2vec [6] uses Weisfeiler-Lehmar
(WL) [7] relabeling to extract rooted-subgraphs and generates

the graph embedding using doc2vec [8]. Among the existing
graph-based features extracted from binaries, Function-Call
Graphs (FCGs), where the vertices specify function calls and
the edges correspond to the caller-callee relationship between
functions, are considered appropriate for representing the
execution logic of the binary [9, 10, 11]. Nevertheless, an FCG
usually has a very complicated structure and huge capacity,
which requires an efficient transformation processing before it
can be taken as input to a learning algorithm [12].

In this paper, we propose an IoT malware detection model
using graph embedding based on FCG. To maintain both call
information and function interaction relationship represented
by FCG, we introduce some improvements to graph2vec. In
particular, we retrieve a graph rooted from a specific function
as input to graph2vec. In this way, the semantics of a particular
function can be captured by analyzing the related graph
structure.

To evaluate the generalization performance of the proposed
malware detection method, we collected a large IoT malware
dataset and performed a series of numerical investigations. The
dataset comprises 112, 728 malware and 89, 576 benignware
samples compiled on seven distinct CPU architectures: ARM,
MIPS, X86, X86-64, PowerPC, SPARC, and UNKNOWN.

Among the three evaluated classifiers, i.e., random forest
(RF), support vector machine (SVM), and Multilayer Percep-
tron (MLP), SVM demonstrated the best performance and
obtained an accuracy rate up to 99.72% on the dataset when
evaluated by 5-fold cross-validation. In the case of CPU-
specific analysis, an accuracy rate of 99.76% was achieved.
These results verify the efficiency of using FCGs to obtain
discriminating models to facilitate malware detection.

The main contributions of the paper are summarized as
follows.

• We improve the graph2vec performance based on FCG
in IoT malware detection.

• We proposed a feature representation which integrates
both graph embedding and structural features from FCGs.

• We utilize a large scale dataset to evaluate the perfor-
mance and compare the proposed method with graph2vec.
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• We reveal the necessity to perform CPU-specific analysis
on IoT malware and provide solid results as a proof of
concept.

The remainder of this paper is organized as follows. Section
II reviews previous works related to background and malware
analysis. Section III presents the proposed method. Section IV
evaluates the performance of the proposed method. Section V
concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we introduce background of IoT malware
and previous work about IoT malware detection based on
dynamic analysis and static analysis.

A. IoT malware

In today’s scenario, IoT devices play a significant role and
are deployed more and more widely. Because IoT devices have
limited computational abilities and hardware limitations and
users lack security awareness, they have become the primary
target of today’s malware attacks. By exploiting vulnerabilities
found in an IoT device, attackers can control it and force
it to become a part of the IoT botnet. The most notorious
IoT malware examples are Mirai and Bashlite [13], which
have been involved in several large-scale distributed denial-of-
service attacks (DDoS attacks) with widespread impact [14]
. The cycle of their attacks is mainly divided into several
steps. First, they scan for devices with full vulnerabilities
as the primary target of their attack, and then they gain
access to other vulnerable devices through some brute force
attacks. After login, they use FTP, HTTP, or other protocols to
download and install the newest botnet binaries. Finally, they
will communicate with the C&C server awaiting the attack
command.

The most famous attack of IoT malware is the DDoS
attacks caused by Mirai to the DNS service of DNS service
provider Dyn in 2016. These attacks made several well-known
websites, including GitHub, Twitter, and many other websites,
inaccessible. Finally, after the release of Mirai source code, it
was discovered to be a Bashlite based mutation.

Another well-known malware family is Hajime. It has many
consistent features and functions with Mirai and some new
features as well. The most noteworthy one is that it will take
multiple steps to hide its running process. The attacker can
open the shell script on an infected device, and as the code is
modular, they can perform additional functions instantly.

There are also other well-known IoT malware samples, such
as Dofloo and Xorddos [15]. They had also launched large-
scale DDOS attacks. Therefore, the problems of IoT malware
must be dealt with efficiently to prevent further damages.

B. IoT malware detection via dynamic analysis

The primary objective of a malware countermeasure can
be divided into two parts: identifying malware and defeating
malware. The most intuitive way to identify malware is to
analyze the execution process of malware. Dynamic analysis
is to identify malware based on its execution flow and impact

on hardware. As the execution flow will show the behavior
of the malware, dynamic analysis has been a good choice for
malware analysis.

Hou et al. [16] put the malware into a sandbox to generate
the execution flow. The execution flow, i.e., the system call
sequence, is converted into a system call graph. The number
of occurrences of the system calls, the call relationship of
the system calls, and the out-degree and in-degree of each
node (system call) on the system call graph become the input
features for learning algorithms.

Surendran et al. [17] identified the semantic behavior of the
sequence on the system call graph. They calculated the shortest
path between system calls and the occurrence rate of the
system call itself. Based on these two values, the dependency
between each system call and others was calculated as the
semantic feature of this malware.

Amer et al. [18] used word2vec to analyze the similarity of
individual system calls in the call sequences. The similarity
analysis was used to cluster the system calls, and the functions
of the calls within the same cluster were considered similar.
They then replaced the system call in the system call string
with the cluster number of the system call. This conversion
made it easier to read the semantic behavior in the system
call sequence.

C. IoT malware detection via static analysis

Although dynamic analysis can accurately capture the se-
mantic behavior of malware, it requires too much computa-
tional time. The time cost and hardware resources for con-
structing the virtual environment cannot be ignored, especially
when a large-scale set of samples are to be analyzed. There-
fore, static analysis is also a suitable choice. Static analysis is
mainly to disassemble and analyze the internal data of malware
executable files. Static analysis can be divided into two sub-
categories: analyses based on graph features and non-graph
features.

1) Graph-feature based approach: Nguyen et al. [11] pro-
posed a lightweight method for detecting IoT botnet, which
is based on extracted high-level features from function–call
graphs, known as PSI-Graphs. These features showed effec-
tiveness when dealing with multi-architecture problems and
avoided the complexity of control flow graph analysis used by
most of the existing methods. They also proposed a method
named rooted-subgraph [19], which is a novel high-level PSI-
rooted subgraph-based feature and generated a limited number
of features with precise behavioral descriptions. The proposed
method required smaller space and reduced processing time
and showed effectiveness and robustness. Xiao et al. [20]
proposed a graph repartition algorithm by transforming API
call graphs into fragment behaviors based on programs’ dy-
namic execution traces. The proposed algorithm relied on
the N-order subgraph (NSG) for constructing the appropriate
fragment behavior. Kawasoe et al. [21] proposed a graph-based
method for confirming differences in malware behaviors and
investigating the actual conditions of malware variants.
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2) Non-graph-feature based approach: Wan et al. [22]
compared the byte sequences in the executable files using
Levenshtein distance similarity. The n-gram was used for
feature extraction to obtain the training set required by the
model. The similarity comparison allowed malware with sim-
ilar behavior patterns to be close to each other, which can help
n-gram to perform feature extraction more efficiently. Jung et
al. [23] used images generated from malware byte information
to represent malware behavioral context, and a convolutional
neural network-based sentence analysis was used to process
the generated images. They performed several experiments
to show the efficiency of their proposed method, and the
experimental results showed that their approach had higher
accuracy than the naive CNN model. The detection accuracy
was about 99%. Su et al. [24] proposed a novel lightweight
approach for detecting DDOS malware in IoT environments.
They extracted the malware images and utilized a lightweight
convolutional neural network for detection. The experimental
results showed that the proposed system could achieve 94.0%
accuracy for detecting malware.

III. METHODOLOGY

This section describes the proposed IoT malware analysis
method based on FCGs extracted from ELF binaries. As
shown in Fig. 3, a given dataset is analyzed following three
steps: reverse engineering, feature extraction, and classifier
modeling. In reverse engineering, we used radare2 [25], a
complete framework for reverse-engineering and analyzing
binaries to create the FCGs. In feature extraction, we gen-
erate graph-embedding features by improving graph2vec and
extract structural graph features introduced in [10], and then
concatenate them into a numerical feature vector. In classifier
modeling, we label the data with two categories: benignware
or malware, and input the feature vector to classification
algorithms. We use 5-fold cross-validation to evaluate the
performance of the algorithms.

A. Reverse engineering

The proposed method analyzes ELF binary files of IoT
malware. First, we use radare2 [25] to extract an FCG from
a binary as input for subsequent analysis. As shown in Fig.
1, we can obtain the graphviz dot file for the binary using
radare2 [25], and use the script to get the corresponding FCG.
As shown in Fig. 2, FCG is a control flow graph that represents
the calling relationship between subroutines in a computer
program. Each node represents a function, and an edge (f, g)
indicates that function f calls function g. Therefore, the loop
in the figure represents a recursive procedure call [26].

B. Feature extraction

We incorporate two types of features in the learning: graph
embedding features and graph structure features.

Many previous works focused on representing the dis-
tributed representation of sub-structures in a graph to extract
graph embedding features, such as nodes, subgraphs, etc.
However, in the analysis tasks of knowledge graphs such as

Fig. 1. Function call graph graphviz dot in ELF binaries

Fig. 2. A part of the function–call graph of a Linux.Mirai sample [11]

classification and clustering, we need to get the representation
of the whole graph if existing means are used. The graph2vec
[6] approach is effective in handling these analysis tasks. The
main concept of graph2vec is to learn the graph representation
by representing documents as graphs and words as rooted
subgraphs. Graph2vect is usually implemented following two
steps: WL machine and doc2vec.

Graph2vec learns the rooted-subgraph by WL relabeling
based on the degree of the vertex. We consider that this
approach will lose information about function calls, leading
to reduced robustness in detecting malware. And an attacker
can easily evade detection by changing the structure of the
graph. Therefore, we made the following improvement in WL
relabeling. Since the detection is based on FCGs, the vertices
represent their functions. We use function names to replace
degrees in WL relabeling to improve the robustness of the
detector and make it more semantic.

To extract structural graph features, we make use of the
statistical characteristics introduced in [9] to gain a more clear
understanding of the structure of the overall graph. The graph
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Fig. 3. Overview of the proposed IoT malware analysis framework

features we use include the number of nodes, number of edges,
density, components, and file size. The measurements used in
the analysis are defined as follows.

1) Definition 1 (Numbers of nodes and edges): General
characteristics which can use to highlight the structural
size of the binary.

2) Definition 2 (Number of connected components): In
graph G, a connected component is a subgraph in
which vertices are connected to each other, but not
connected to other vertices in the subgraph. The number
of components of G is the cardinality of a set that
contains such components.

3) Definition 3 (Density): For a graph G = (V,E), its
density is defined as the closeness of all its edges to the
maximum number of edges. The density of G can be rep-
resented as the average normalized degree. Density =
1
n

∑n
i=1

deg(vi)
n−1 , where V = {v1, v2, ..., vn}.

Finally, we combine graph embedding and structural graph
features and apply a simple normalization to scale them all to
the [0, 1] range.

C. Classifier Training

Since the dimension of the Graph embedding feature may
affect the subsequent experimental results, we first determine

the training dimension before training.

Machine learning machine-learning-classifiers can automat-
ically find rules by analyzing data and generalizing unknown
malware in varying environments. We selected three com-
monly used classifiers, e.g., RF, SVM, and MLP, to build
prediction models for detecting malware. The details are
described as follows.

• RF is an ensemble learning method for classification or
regression that operates by constructing a multitude of
decision trees at training time [27]. For classification
tasks, the output of RF is the class selected by most trees.
For regression tasks, the mean or average prediction of
the individual trees is returned.

• SVM is a supervised learning model that analyzes data
for classification and regression analysis [28]. An SVM
constructs a hyper-plane in the input or kernel-induced
space following the large margin principle. It has been
widely applied for classification, regression, or other tasks
like outlier detection.

• MLP is a class of feedforward artificial neural networks
consisting of at least three layers. It utilizes a optimization
technique called back-propagation for training [29]. It can
distinguish data that are not linearly separable.
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Fig. 4. Sample distribution among different CPU architectures

IV. EXPERIMENT

In our experiment, we utilized the dataset presented in
Section IV-A to train the prediction model and tuned the
parameters to obtain the best model. Finally, we evaluated
the performances of RF, SVM, and MLP on IoT malware
detection, aiming to differentiate malware and benignware in
the dataset. Our experiments are based on the scikit-learn [30]
implemented in Python 3.7.

A. Dataset

In the dataset, we collected 202, 304 ELF executable files
from IoT devices, from which 112, 728 are malicious, and
89, 576 are benign. The distribution of samples among seven
different CPU architectures is shown in Fig. 4. As shown in
the figure, ARM and MIPS are the most popular CPU archi-
tectures. However, we failed to collect sufficient benignware
of SPARC since most of the firmware images of SPARC are
encrypted.

B. Visualization

To understand the distribution of the data, we use Uniform
Manifold Approximation and Projection (UMAP) [31] to visu-
alize the data in a two-dimensional embedding space. UMAP
is a non-parametric graph-based dimensionality reduction al-
gorithm that uses applied Riemannian geometry and algebraic
topology to find low-dimensional embeddings of structured
data. The UMAP algorithm consists of two steps: (1) com-
puting the graphical representation of the data set (fuzzy
simplicial complex) and (2) optimizing the low-dimensional
embedding of the graph through stochastic gradient descent.
It is computationally efficient and can deal with large high-
dimensional datasets. Fig. 5 shows the 2D visualization result
of a subset of 200 benignware samples and 200 malware

Fig. 5. A visualization of benignware and malware (Dimension=262)

Fig. 6. Tuning parameter D using 5-fold cross validation for RF. D is selected
from {16, 32, 64, 128, 256, 512}.

samples with dimension, D, is equal to 262. The figure shows
yellow points representing malware sample and purple points
representing benignware sample. We can see that despite the
low-level presentation, the benignware and malware show a
good separability: a benignware sample falls close to other
benignware samples but apart from malware samples. High
separability implies good prediction performance for malware
detection.

C. Parameter tuning

The generalization performance of learning algorithms re-
lies heavily on the hyperparameters used to train the model.
Parameter tuning can give us optimized values for hyperpa-
rameters, which maximizes our model’s predictive accuracy.
For each of the parameters of a given model, we define a series
of values, i.e., grid values, then all possible combinations of
grid values on different parameters form a pool of parameters
settings. Table I lists the grid values of all the parameters that
we have examined for each classifier.

An example of parameter tuning is shown in Fig. 6. In the
figure, the blue line describes the overall prediction accuracy
averaged for each D parameter. We can observe that the
accuracy rate increases as D increases from 22 to 262,
and it decreases after D = 262. And we can get the best
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TABLE I
SETTINGS FOR PARAMETER TUNING

Parameter Classifier Physical Meaning Grid Values

D RF, SVM, KNN Parameter D as for Dimension {16, 32, 64, 128, 256, 512}

N RF Number of trees in the forest {50, 100, 150, 200, 250, 300, 350, 400, 450}

C SVM Penalty parameter {0.1, 1, 10, 100, 1000}

γ SVM The width of the radial basis function kernel {0.00001, 0.0001, 0.001, 0.01, 0.1}

S MLP Size of hidden layer {10, 20, 30, ...,100}

I MLP Maximum number of epochs {10, 20, 30, ...,100}

Fig. 7. Tuning parameter C and γ for SVM

accuracy rate at D = 262, so the result suggests that 262 is
the most appropriate number of dimensions used in follow-
up experiments. After selecting the most suitable dimension
parameter, we adjust the parameters of the subsequent models
accordingly.

The number of estimators, N , is tuned for RF. More
estimators can make the model have better performance but
at the same time make the prediction slower. We can achieve
the highest accuracy when N = 300 and N = 450. As more
estimators will lead to a longer training and prediction time,
N = 300 is selected as the most suitable parameter for RFs.

As an example in Fig. 7, we tuned the C and γ parameters
of the SVM. Here, C is called the penalty coefficient, which is
the tolerance for errors. The higher the C, the less error will be
tolerated, and the more likely to obtain an overfitting classifier.

The smaller C is, the easier it is to obtain an underfitting
model. If C is too large or too small, the generalization
ability becomes poor. γ is a parameter that comes with the
function after selecting the radial basis function (RBF) kernel.
It implicitly determines the distribution of the data after
mapping to the new feature space. Commonly, the larger the γ,
the fewer the support vectors, and the smaller the γ, the more
support vectors. The number of support vectors affects the
speed of training and prediction. We used grid search to make
(C, γ) independent of each other, convenient for a parallel
implementation to get the best overall result. The grid search
table shows that the best result can be obtained when C = 100
and γ = 0.01. We select (100, 0.01) as the parameter setting
for SVMs.

Finally, we tuned the hidden layer size, S, and
max iteration, I , for the MLP. In a neural network, the
number of hidden layer nodes and the iterations are tuned,
greatly affecting the generalization performance. S determines
the model complexity of the network, and max iteration
controls the overfit to training samples. The grid search
table shows that the best result is obtained at S = 100,
max iters = 80. The reported experiment result for MLPs is
based on this parameter setting.

D. Evaluation matrices

In the evaluation phase, we adopted the common evaluation
metrics, namely, accuracy, recall, precision, false-positive rate,
and F1-measure, to assess the performance of our proposed
method. These metrics are defined based on the following
intermediate measures.

• True positive (TP): samples correctly classified as posi-
tive.

• False positive (FP): samples incorrectly classified as
positive.

• True negative (TN): samples correctly classified as neg-
ative.

• False negative (FN): samples incorrectly classified as
positive.
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Accuracy refers to the proportion of correct judgments of true
and false:

Accuracy =
TP + TN

n
. (1)

Precision refers to how much is true when the judgment is
true:

Precision =
TP

TP + FP
. (2)

Recall is the probability of the samples in the positive class
being classified correctly:

Recall =
TP

TP + FN
. (3)

F1-measure is the weighted average of precision and recall:

F1 measure =
2 ∗ (Recall ∗ Precision)
Recall + Precision

. (4)

E. Performance evaluation

In this section, we design two experiments to demonstrate
the performance of the proposed approach for IoT malware de-
tection. The first experiment is conducted on an overall dataset
consisting of all of the samples in our dataset. In the second
experiment, the evaluation is performed on eight subsets
formed by selecting samples from the same CPU architecture.
Following section IV-C, we get the optimal parameters for
each classifier independently. The selected parameter settings
are shown in the rightmost column in Table II, and we use
5-fold cross-validation to verify our experimental results. The
results in tables are averaged over five independent runs with
the training and test sets determined by 5-fold cross-validation.

The experiment’s purpose is to evaluate the performance
of the proposed method in distinguishing malware samples
and benignware samples. A detector will issue a security
alert to warn the user when a downloaded program is rec-
ognized as malware. Table II shows the evaluation results
of all examined classifiers. All classifiers yield near-optimal
results with accuracy greater than 99%, indicating that the
FCGs with graph2vec and structure information carry essential
information for differentiating malware from benignware on
all IoT platforms.

Fig. 6 shows how dimension affects the performance of the
classifier. The best accuracy is obtained at D = 262, and the
accuracy drops when D falls far from this value. In this task,
because of the near-optimal performance, precision and recall
on the malware class are close to the accuracy values, shown
as overlapped lines in the figure.

We have also compared the proposed method with
graph2vec. From Table II, we can find that the performance
of the proposed method has been significantly improved, so
it has also been certified that our approach can be more
comprehensive in detecting malware.

In this experiment, we divided the dataset into seven subsets
based on the supported CPU architectures of the samples.
Since the benignware samples on SPARC are insufficient to
form a proper dataset, we omit SPARC experiments.

Fig. 8 shows the distribution of data embedded in the 2D
space, with each unique color representing a different CPU

TABLE II
PERFORMANCE COMPARISON OF GRAPH2VEC AND PROPOSED METHOD

Classifier Graph2vec
Proposed

method
Parameter

RF
Accuracy 98.64% 99.48% D=256,

F1-score 98.77% 99.54% N=300

SVM
Accuracy 98.91% 99.71% D=256,

F1-score 99.03% 99.74% C=100, γ=0.01

MLP
Accuracy 98.45% 99.70% D=256,

F1-score 98.62% 99.73% S=100, I=80

Fig. 8. UMAP 2D visualization of sample distribution for benignware and
malware from different CPU architectures.

architecture. To improve the readability of the graph, we use
a subset of the 10, 000 samples for visualization purposes. We
have confirmed that using UMAP on the full dataset produces
a layout similar to the one shown in the figure. We can see
that the samples from the same CPU architecture form tight
clusters. The benign and malware samples within the clusters,
denoted by colored discs and minus signs, respectively, exhibit
significant separability. This result suggests that it may be
feasible to pursue CPU-specific classification.

Table III shows the results of malware detection among
specific CPU architectures. We only report SVM and MLP,
which can get better performance within the overall dataset in
the table to enhance readability.

As shown in Table III, SVM and MLP reach accuracy rates
close or even above 99.70% on all CPU architectures except
x86 64. Performance of malware detection on x86 64 is
always slightly lower than on other platforms. An explanation
for this result is that the binaries collected for the x86 64
architecture include files from a wide range of Linux distribu-
tions, rendering the classification tasks more complicated.

We also compare the results of the two scenarios in Table
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TABLE III
RESULT OF CPU-SPECIFIC ANALYSIS

CPU Architecture Classifier Accuracy F1-score

ARM
SVM 99.69% 99.68%

MLP 99.71% 99.70%

MIPS
SVM 99.81% 99.78%

MLP 99.80% 99.75%

X86
SVM 99.99% 99.97%

MLP 99.96% 99.91%

X86-64
SVM 99.52% 99.52%

MLP 99.68% 99.68%

PowerPC
SVM 99.80% 99.76%

MLP 99.89% 99.86%

SPARC
SVM NaN NaN

MLP NaN NaN

UNKNOWN
SVM 99.73% 98.35%

MLP 99.63% 97.86%

TABLE IV
RESULT COMPARISON IN TWO SCENARIOS

All Data Divide CPU

Classifier SVM MLP SVM MLP

Accuracy 99.72% 99.70% 99.76% 99.77%

F1-score 99.71% 99.73% 99.68% 99.66%

IV. Numbers in the table are the weighted averages of the
numbers reported in Table IV according to:

WeightedMetric =
1

M

C∑
i=0

mi ∗Metric(i), (5)

where C is the number of CPU architectures in the experiment,
M is the total number of samples in the dataset, and mi is
the number of samples on the i-th CPU architecture.

These results show that CPU-specific analysis can further
improve the generalization performance of the classifiers.

V. DISCUSSION

A. Comparison with related work

In this experiment, we compare the proposed method with
the methods in the related work of malware detection. We
implemented the FCG signature-based method introduced by
Vij et al. [32] and the method proposed by Alasmary et al. [9]
which uses graph theory information extracted from control
flow graph for malware detection. Due to scalability issues
with the referred method, we used a subset of 100K ELF files

TABLE V
PERFORMANCE COMPARISON WITH RELATED WORK

Research Feature Classifier Accuracy F1-score

Vij [32]

RF 96.05% 96.04%

FCG signature SVM 74.00% 73.96%

MLP 81.13% 81.13%

Alasmary [9]

RF 94.14% 94.13%

CFG graph theory SVM 77.34% 77.34%

MLP 80.97% 80.41%

Proposed method

RF 99.17% 99.17%

FCG embedding SVM 99.37% 99.37%

MLP 99.59% 99.58%

composed of 50K malware and 50K benignware samples for
evaluation.

The results of each classifier are shown in Table V. The
proposed method has the highest accuracy in malware detec-
tion (99.59% using MLP). These results indicate that FCG
embedding contains considerable discriminating information
for malware detection, and these results show that the proposed
method is more efficient than existing methods.

B. Limitation of proposed method

Since our proposed method detects malware based on static
analysis, it is unavoidable if an attacker deliberately avoids
detection. If the attacker adds more obfuscating functions to
change the overall structure of the binaries, it may cause error
prediction for the detector. This is an inherent difficulty for
all static analysis methods, and we plan to further improve on
this point and strengthen the stability of our detector.

VI. CONCLUSION

In this paper, we proposed an approach based on FCG
to optimize the effectiveness of graph2vec in IoT malware
detection and combined it with structural graph features to
make the detection more accurate. The experimental results on
malware detection showed near-optimal accuracy greater than
99.72%, and the performance can be further improved using
CPU-specific models. We believe that promising solutions for
IoT security can be developed based on these findings.
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