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Abstract—In this era of rapid network development, Internet
of Things (IoT) security considerations receive a lot of attention
from both the research and commercial sectors. With limited
computation resource, unfriendly interface, and poor software
implementation, legacy IoT devices are vulnerable to many
infamous malware attacks. Moreover, the heterogeneity of IoT
platforms and the diversity of IoT malware make the detection
and classification of IoT malware even more challenging. In
this paper, we propose to use printable strings as an easy-to-
get but effective cross-platform feature to identify IoT malware
on different IoT platforms. The discriminating capability of these
strings are verified using a set of machine learning algorithms
on malware family classification across different platforms. The
proposed scheme shows a 99% accuracy on a large scale IoT
malware dataset consisted of 120K executable fils in executable
and linkable format when the training and test are done on
the same platform. Meanwhile, it also achieves a 96% accuracy
when training is carried out on a few popular IoT platforms but
test is done on different platforms. Efficient malware prevention
and mitigation solutions can be enabled based on the proposed
method to prevent and mitigate IoT malware damages across
different platforms.

Index Terms—Computer security, IoT malware, machine
learning, malware analysis, static analysis

I. INTRODUCTION

With its significant connectivity, flexibility, and applicabil-

ity, the Internet of Things (IoT) has enjoyed great proliferation

in recent years [1]. However, simple implementation, default

password settings, and difficult-to-patch properties make IoT

devices vulnerable to numerous malware attacks. Thus, imple-

menting the security requirements of IoT devices is a critical

and challenging issue.
Malware analysis, i.e. investigating the behavior of malware

samples and classifying malware into families with similar

features, has been studied broadly, and using various meth-

ods have been proposed to effectively prevent and mitigate

malware on several platforms, e.g. the Windows and Android

operating systems. IoT malware programs are designed to

spread across multiple central processing unit (CPU) architec-

tures; thus, cross-platform analysis of IoT malware is much

more challenging compared to single-platform analysis of

malware [2, 3].

Conventional techniques, e.g. pattern matching, are not

effective in detecting unknown malware, a rapid shift to

using machine-learning engines has been observed in antivirus

solutions [4, 5].

Based on the type of features used in learning, existing

malware analysis methods fall into two categories, i.e. dynamic

and static analysis method. In dynamic analysis, malware

binaries are executed in an emulated environment, e.g. a

honeypot or sandbox; thus, the malware runtime behavior

can be recorded and analyzed. In contrast, static analysis

is performed on some version of the source code or object

code. The logs files obtained from both dynamic and static

analyses are subsequently taken as inputs to machine learning

methods to generate prediction models for various purposes,

e.g. malware detection and malware family classification.

IoT malware analysis can be pursued using the dynamic

and static analysis paradigms, special attention has to be

given to the inherent multi-platform nature of the problem.

For IoT malware implemented on multiple CPU architectures,

the development of emulation environments corresponding to

different CPU architectures to support dynamic analysis is

resource-intensive and sometimes suffers from problems such

as software incompatibility [6]. In addition, crafty malware can

be implemented with mechanisms to detect emulation environ-

ments; thus, such malware can evade dynamic analysis [5]

methods. Therefore, static analysis is currently considered

much more efficient for IoT malware when implementation

principles, e.g. simplicity and straightforwardness, are valid.

However, not all static features are effective for cross-platform

analysis. For example, operation codes (opcodes) defined in

instruction sets on a specific CPU architecture differ com-

pletely from those defined on other CPU architectures. Another

example of architecture-dependent structure is the executable

and linkable format (ELF) header. Although the ELF header

is a common standard format defined for Unix and Unix-like

systems, values in the header fields are heavily dependent

on the platform on which the files are complied. In this

sense, opcodes and ELF headers are architecture-dependent

and cannot be used to facilitate cross-platform IoT malware
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analysis.

In this paper, we explore using static features to develop

an advanced malware analyzer that can generalize knowledge

learned from malware on one CPU architecture to predict mal-

ware on other CPU architectures. We propose the use of print-
able strings as input features to build machine learning models

for malware analysis. Typically, it comprises comprehensible

texts, e.g. plain text in code comments, function names created

by authors, or application programming interface (API) names

generated by the compiler. Printable strings have the following

advantages compared to other commonly used features, e.g.

opcodes, ELF headers, and byte sequences.

• High accessibility: Printable strings can be extracted

directly from malware binaries with little effort; thus, this

is a cost-effective approach for IoT devices with limited

resources. This a strong advantage over other features,

e.g. opcodes, that require advanced reverse engineering

tools for feature extraction.

• High intelligibility: Readable content, e.g. plain texts and

function names, are intelligible for users without malware

reverse engineering or digital forensics backgrounds. In

addition, it facilitate better explanations of the prediction

results obtained from the analysis.

• Cross-platform generalization ability: Printable strings

include essential identifying information that is closely

related to the source code; therefore, they can capture

common characteristics of malware samples from the

same family compiled on different CPU architectures.

In this study, we collected a large IoT malware dataset

and performed a series of numerical investigations to evaluate

the generalization performance of the proposed cross-platform

malware analysis method. The malware set downloaded from

VirusTotal [7] comprised 122,504 recent malware samples

compiled on seven distinct CPU architectures, i.e. ARM,

MIPS, X86, X86-64, PowerPC, SPARC, and UNKNOWN1.

To verify the cross-platform performance of the proposed

method, a training dataset comprised malware samples on

the top-three major CPU architectures, and the test dataset

comprised IoT malware samples from CPU architectures not

included in the training samples. Specifically, ARM, MIPS,

and X86 samples were selected for the training set, and

SPARC, X86-64, PowerPC, and UNKNOWN samples were

used for testing. To remove noisy and redundant strings that

were irrelevant to the learning, we designed a feature selection

scheme that reduced feature dimensionality from 14 million to

approximately 2K, which significantly reduced training time

and increased prediction performance.

Among the three evaluated classifiers (i.e. the random

forest (RF), K nearest neighbors (KNN), and support vector

machine (SVM) classifiers), the SVM classifier demonstrated

the best performance and obtained an accuracy rate of up

to 99.36% on the training set when evaluated by 10-fold

cross-validation. The accuracy rate obtained when using the

1Malware samples with unidentified CPU architecture information are
categorized as UNKNOWN.

classifiers on the testing sets for other CPU architectures was

up to an average of 98%, while the methods opcode and ELF

header-based methods showed an average accuracy of 32.78%

and 81.76%, respectively. These results verify the efficacy of

using printable strings to obtain discriminating information

to facilitate malware classification on known platforms and

generalizing to those on unknown platforms.

The remainder of this paper is organized as follows.

Section II reviews work related to malware analysis. Sec-

tion III defines the cross-platform analysis problem. Section IV

presents the proposed cross-platform IoT malware analysis

method. Section V evaluates the performance of the proposed

method and discusses the experimental results. Finally, Sec-

tion VI concludes the paper.

II. RELATED WORK

In this section, we review studies related to the detection

and classification of malware using machine learning methods.

According to the method used to analyze malware, they

are categorized into two paradigms, i.e. static analysis and

dynamic analysis [8].

A. Dynamic analysis-based approaches

In dynamic analysis, program binaries are executed in an

emulated environment; thus, their runtime behaviors can be

recorded and analyzed. Among the various system levels

at which dynamic analyses can be performed, system calls

provide a comprehensive interface between software and the

Linux kernel, and such analyses are prominent in the literature.

For example, Xiao et al. [9] took the semantic information

in the system call sequences as natural language, and they

extracted system call sequences as a sentence and constructed

a classifier based on long short term memory (LSTM) neural

networks. In addition, Shobana et al. [10] extracted system

calls from ELF files and preprocessed them using the N -

gram model. They then used the N -gram representation to

train a recurrent neural network (RNN) for malware detection.

Dynamic analysis can also be pursued using network traffic

captured during software runtime. For example, Wang et

al. [11] collected the network traffic generated by Android

mobile applications and transmitted it to a central server for

analysis. On the server side, numerical features were extracted

from the traffic and input to machine learning engines for

malware detection.

Dynamic analysis provides an effective way to understand

the attacking behaviors of malware and differentiate them

from benign software. Depending on the common system

call names shared among different CPU architectures, cross-

platform dynamic analysis can be implemented to various

extents. Nonetheless, the heterogeneity of IoT devices’ CPU

architectures may lead to unforeseeable complexity in devel-

oping a consistent virtual environment that works for multiple

CPU architectures [5]. In addition, the resource consumption

of deploying such a virtual environment is considered infea-

sible on resource-constrained IoT devices [6].
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B. Static analysis-based malware detection

In contrast to dynamic analysis, static analysis is performed

without executing the programs. Such analyses are commonly

performed on some version of the source or object code.

Therefore, reduced resource consumption and improved mod-

elling efficiency can be expected with static analysis.

For example, Darabian et al. [12] counted the numbers

of repeated occurrences of opcodes to detect malware, and

they found that the numbers of repetitions of certain opcodes

in malware samples are greater than those in benignware

samples. In addition, Haddadpajouh et al. [13] extracted the

opcode sequence and selected useful features based on the

information gain scores of the opcodes. Then, they applied

an LSTM network to these features for malware detection.

Azmoodeh et al. [14] and Dovom et al. [15] obtained the

opcode sequence with program execution order using a control

flow graph (CFG). They adopted a deep learning algorithm

and a fuzzy pattern tree to detect IoT malware. Yuxin et

al. [16] also used a CFG to obtain the opcode sequence with

the program execution sequence. They then constructed an N-

gram representation of these sequences and applied a deep

belief network (DBN) for malware detection. Kang et al. [17]

extracted N-grams from opcode sequences and encoded them

into binary codes, and the N-gram representation was then

used to train a classifier for malware detection.

The opcode can effectively detect and classify malware;

however, due to differences in instruction sets under different

CPU architectures, opcodes are limited to the same architec-

ture for generalization. Another type of easily extracted feature

is from the ELF format. For example, Shahzad et al. [18]

extracted 383 structural features from ELF files, including

section headers, symbols section, and program headers. Then,

they used forensic analysis to sort and select effective fea-

tures. However, ELF fields are typically set to predetermined

values depending on the CPU architecture an executable is

compiled; thus, classifiers based on ELF-related features tend

to demonstrate reduced generalization performance in cross-

platform analysis.

It is also common to analyze malware using the feature

structure of a directed graph. For example, Alasmary et

al. [19] found that IoT malware contains fewer nodes and

edges than Android malware in the binary file. Alasmary et

al. [20] also used Radare2 to generate a CFG of the sample

and calculated the CFG properties, e.g. density, the shortest

path, and the numbers of edges and nodes. Then, machine

learning algorithms were used to classify samples as malware

or benignware based on the CFG features. Malware detection

via CFG features focuses on only the structure of the code

block and generalizes well to samples from different CPU

architectures. However, calculating the graph properties tends

to be time consuming for large files, which can lead to reduced

detection efficiency.

In addition, Islam et al. [21] extracted printable strings and

API calls from Windows PE to integrate static and dynamic

analyses. Here, the static features used to train the classifi-

cation models included function length frequency, frequency

of printable strings, e.g. API calls, and a one-hot encoding

representing the presence of printable strings. Incorporating

static features in learning resulted in a significant improvement

in malware detection (from 90.398% to 97.055%) on an

integrated dataset.

Alhanahnah et al. [3] used N -gram extract meaningful print-

able string sequences from the executables. They performed

malware detection based on high-level statistical features from

the assembly codes, including: total number of functions,

total number of instructions, number of redirect instructions,

number of arithmetic instructions, number of logical instruc-

tions, number of transfer instructions, number of segments,

and number of call instructions.

ba executables, and they performed malware detection based

on high-level statistical features from the assembly codes,

including total number of functions, total number of instruc-

tions, number of redirect instructions, number of arithmetic

instructions, number of logical instructions, number of transfer

instructions, number of segments, and number of call instruc-

tions.

III. CROSS-PLATFORM ANALYSIS: PROBLEM DEFINITION

Here, we describe our motivation and philosophy behind

performing IoT-malware analysis across different CPU archi-

tectures. The Linux operating system is the most popular for

IoT devices [22]. Most IoT malware arrive on IoT devices

in the executable and linkable format (ELF), which is the

standard binary format on Unix-like operating systems. By

design, the ELF is flexible, extensible, and cross-platform,

and this flexibility allows it to be adopted by many different

operating systems on many different hardware platforms.

A. Motivation

Unlike conventional malware on Windows and Android

devices, which are confined to a limited number of CPU

architectures, IoT devices have much more diverse CPU archi-

tectures, and IoT malware can spread among heterogeneous

devices [3]. These differences in CPU architectures cause

the same malicious behavior to be presented with different

characteristics. In addition, the distribution of malware over

different CPU architectures is extremely uneven. Consider the

Dofloo distribution example shown in Table I. Most malware

samples are collected on the X86 and ARM architectures,

with fewer samples collected on the MIPS and X86-64 ar-

chitectures. There are no Dofloo samples collected on other

CPU architectures. In this case, an effective malware analyzer

must learn the identifying information from Dofloo samples on

available platforms and generalizes this information to detect

malware on other CPU platforms.

B. Effective features

In the previous section, assorted features obtained from

static and dynamic analyses were surveyed in the malware

analysis context. Many of them do not have strong poten-

tial to facilitate cross-platform classification, which reduces
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(a) Opcode - Mirai (ARM) (b) Opcode - Mirai (MIPS) (c) Opcode - Dofloo (MIPS)

(d) System call - Mirai (ARM) (e) System call - Mirai (MIPS) (f) System call - Dofloo (MIPS)

(g) String - Mirai (ARM) (h) String - Mirai (MIPS) (i) String - Dofloo (MIPS)

Fig. 1. Comparison of static features for different platform and malware families

classification performance for IoT malware in heterogeneous

environments. Fig. 1 shows examples of different raw features

extracted from the ELF files of different CPU architectures

and malware families. Consider the example opcode sequences

shown in the first row of Fig. 1. Here, while the opcode

sequence of the Mirai sample in (b) shows strong similarity

with the Dofloo sample in (c), it appears to be completely

different from the Mirai sample in (a) because different CPU

architectures tend to adopt completely different instruction

sets. In this sense, due to the difference in representing

features, discriminating knowledge learned for a specific CPU

architecture cannot be generated for CPU architectures with

different instruction sets.

In the proposed IoT malware analysis method, malware

binaries in ELF format are taken in as input. As long as

no intended obfuscation is adopted when creating ELF files,

which is the current situation for IoT malware, the binary file

contains identifying information for the functionality carried

out by the program. Although ELF is defined to facilitate

machines to perform predetermined instructions in the pro-

grams, information contained in the file can be partially read

by humans. Fig. 2 shows the hex dump of the bash command

in ELF on the ARM64 platform2. The left panel of the hex

2This program is available at: https://github.com/JonathanSalwan/
binary-samples/blob/master/elf-Linux-ARM64-bash.

dump shows the hexadecimal ASCII codes of the bytes in

the ELF file. In the right panel, only the printable strings are

interpreted and printed for ease of reading. Here, the color

boxes highlight three major types of readable contents, i.e.

API names (green), garbled texts (red), and plain texts (blue).

Examples of printable string segments collected from malware

samples on different IoT CPU architectures are shown at the

bottom in Fig. 1. For the two Mirai samples (g) and (h)

collected from ARM and MIPS, respectively, the displayed

segments comprise system calls that appear to be from the

same source. In contrast, the system calls shown in the Dofloo

sample in (i) appear to be drawn from a different set.

C. Problem definition

We have established the following requirements on the

proposed cross-platform IoT malware analysis scheme.

• The conversion from software programs to a unified

format as input to the model can be performed regardless

of the CPU architecture programs are compiled on.

• The conversion from a test software program to input

to the prediction model can be performed regardless of

the CPU architecture on which the training samples are

compiled.

The first requirement guarantees that any ELF file collected

from IoT devices can serves as a training sample to build the
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Fig. 2. Printable strings in ELF binaries

model or a test sample to evaluate the model. This require-

ment also implies a unified model. The second requirement

guarantees that generalization can be extended to previously

unknown platforms.

IV. METHODOLOGY

In this section, we describe the proposed IoT malware

analysis method based on printable strings extracted from

binaries. As shown in Fig. 3, a given malware dataset is

analyzed following four steps, i.e. feature extraction, feature

selection, model training, and model evaluation. In the feature

extraction step, we extract printable strings from malware

samples and encode them as numerical vectors. In the feature

selection step, we introduce feature ranking criteria to estimate

the significance of features to obtain superior classifiers with

reduced feature dimension and faster training time. In the

model training step, the feature vectors are input to classi-

fication algorithms to construct prediction models. Finally, in

the model evaluation step, the generalization performance of

the models is evaluated using the test samples.

A. Feature extraction

The proposed method analyzes the ELF binaries of IoT

malware and employs the trained classifier to each platform

for prediction. We extract the information from the binary

files and formulate the malware samples as input vectors for

machine learning models. We consider two feature vectors, i.e.

a string length frequency (SLF) vector and a printable string
information (PSI) vector. In addition, we compare our method

with the static features presented in [21].

1) String length frequency vectors: The SLF vector con-

tains information of the number of strings in different length

ranges. We calculated the length of all strings extracted from

malware and calculated how many strings were contained in

each bin with a predefined length range. Finally, we take the

values of all bins to form the SLF vector (Fig. 4). Here, we

used 50 bins, and the jth bin was defined to contain strings

with a length range between e(j−1) ln(L)/50 and e(j) ln(L)/50,

where L is the maximum string length in the complete dataset.

L was set to 74,076 in our experiment.

2) Printable string information vectors: First, we created

a global list containing all printable strings extracted from

the X86, ARM, and MIPS binaries in the dataset. We then

determined whether the strings in the global list exist in each

ELF. A file xi with printable strings is encoded as a binary

vector Xi ∈ {0, 1}D, where D is the length of the global

list, xi,j = 1 indicates that string i shows up in the jth

malware, and xi,j = 0 indicates the absence of string i in

the jth malware.

B. Feature selection

Initially, we extracted 14,530,806 printable strings as fea-

tures; however, some of these features may contain noisy

information and lead to degenerated classifier performance.

By calculating the document frequency (DF) of each string,

we excluded strings with low frequency, e.g. those with DF

less than 10. In addition, we did not consider strings with

special characters because such strings may be generated by

the compiler and may have negative effect to cross-platform

capability. To reduce the redundancy in co-occurring strings,

we found out string sets that have strong co-occurrence and

kept one of them in our feature set. As a result, the feature

dimension was reduced to 212,146 before the application of

feature selection methods to further reduce dimensionality and

improve cross-platform capabilities.

In the first method, we adopted the recursive feature elim-

ination (RFE) [23] algorithm for feature selection. The RFE

algorithm calculated each feature’s score by training a support

vector machine (SVM) model, and removed features with low

scores. Then, the RFE algorithms repeated the iteration with

the remaining features until the specified number of features

was obtained.

In the second method, cross-platform capability was con-

sidered, where we obtained cross-platform information from

the distribution of DF. Here, we used information entropy

to measure the uncertainty in the ith string’s distribution on

different CPU architectures.

Let

yi = {yi,j |j = 1, . . . ,M}, (1)

be the set of DF values of the i-th string on M CPU

architectures. Information entropy, H(yi), which indicates the

average degree of information in yi, is computed as

H(yi) = −
M∑

j=1

P (yi,j)logP (yi,j), (2)

where P (yi,j) is the probability when yi = yi,j . Then we

define a compound score, namely DFrank, for the ith string

as follows:

DFrank(yi) = H(yi)× dfi,k
dfi

, (3)

where dfi,k is the DF value of string i in the kth class, and dfi
is the sum of all DF values of string i. The first multiplier in

DFrank, i.e. the information entropy, rewards strings that have
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high generalization capability across different CPU architec-

tures. The second multiplier in DFrank rewards strings with

much higher DF values in the kth class than in the other classes

and therefore can be considered as identifying features of the

kth class. By taking strings with high DFrank scores from

each family, we can obtain features with high discriminating

information and better cross-platform capability.

Based on RFE and DFrank, we tried different strategies to

combine them for improving the feature selection results. The

settings we adopted in our experiments are discussed in V-C.

C. Machine-learning methods

Classifiers trained by machine learning methods can find

rules automatically by analyzing data, which is beneficial to

analyzing unknown malware in a variety of malware environ-

ments. Here, we selected three commonly used classifiers, i.e.

the random forest(RF), k nearest neighbors KNN, and SVM

classifiers. To comply with the cross-platform analysis prob-

lems defined in Section III, we considered malware samples

collected from the three most common CPU architectures, i.e.

the X86, ARM, and MIPS architectures, as the training set.

Assuming that malware on other platforms is unknown for

training, we cannot take account of string features other than

those find in the training samples. Using the aforementioned

feature extraction and selection methods, the strings were

converted to a feature vector and input to the machine learning

algorithms. To evaluate the performance of the cross-platform

analysis, we used 10-fold cross validation, and we evaluate

the testing set after each fold was trained. The training effec-

tiveness and cross-platform analysis results are based on the

average of 10-fold cross validation. We use Scikit-Learn [24]

to implement the algorithms described above.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the classifiers

trained on the IoT malware dataset. First, we introduce the

experimental dataset. Then, we evaluate the proposed method

before and after feature selection, and compare the perfor-

mance of different machine learning algorithms. Finally, the

proposed method is applied to compare performance with

classifiers trained on two types of static features other than

printable strings.
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TABLE I

CPU ARCHITECTURE DISTRIBUTION IN EACH LABEL

Training set Testing set

X86 MIPS ARM SPARC X86-64 PPC UNKNOWN

Mirai 15806 10089 18659 3655 3385 5033 7267

Tsunami 844 318 382 42 190 90 165

Hajime 0 158 321 0 0 0 0

Dofloo 404 83 979 0 80 0 0

Bashlite 6481 6917 10212 2359 2977 2709 3950

Xorddos 472 0 0 0 3 0 0

Android 1073 357 2857 0 692 1 5

A. Dataset

We collected 122,504 malware ELF files from VirusTo-

tal [7], which were divided into seven malware families

according to antivirus software reports, i.e. Mirai, Tsunami

(Kaiten), Hajime, Dofloo, Bashlite (Gafgyt), Xorddos, and

Android. In addition, these malware ELF files were further

divided into X86, MIPS, ARM, SPARC, X86-64, PPC, and un-

known type according to the CPU architecture. Table I shows

the distribution of malware families and CPU architectures.

B. Evaluation metrics

In these evaluations, we adopted common evaluation metrics

(e.g. accuracy, precision, and false positive rate) to investigate

the performance of the proposed method. These metrics are

defined based on the following intermediate measures.

• True positive (TP): samples correctly classified as posi-

tive.

• False positive (FP): samples incorrectly classified as

positive.

• True negative (TN): samples correctly classified as neg-

ative.

• False negative (FN): samples incorrectly classified as

positive.

Accuracy is the percentage of correctly classified test samples:

Accuracy =
TP + TN

n
. (4)

Precision represents the probability that predicted positives are

classified correctly:

Precision =
TP

TP + FP
. (5)

Recall is the probability that samples in a given class are

classified correctly:

Recall =
TP

TP + FN
. (6)

F1-measure is the weighted average of precision and recall:

F1measure =
2 ∗ (Recall ∗ Precision)

Recall + Precision
. (7)

C. Performance evaluation
1) Performance before feature selection: We referenced the

analysis method through printable strings in [21], and applied

it to the classification of IoT malware. Table II shows the

classification performance before feature selection. With this

method, 97.95% cross validation accuracy was obtained on

the dataset before performing feature selection. However, the

dimension of the feature vector was as high as 14,530,806,

and training required excessive time; thus, we adopted feature

selection to reduce training time.

TABLE II
CROSS-PLATFORM PERFORMANCE BEFORE FEATURE SELECTION

CPU architecture Algorithm Accuracy(%) F1-measure(%)

Training Set X86 + ARM + MIPS

RF 97.95 97.94

KNN 97.12 97.11

SVM 97.45 97.44

Testing Set

SPARC

RF 98.00 98.00

KNN 94.83 95.94

SVM 98.04 98.05

X86-64

RF 93.88 93.72

KNN 89.00 88.54

SVM 92.72 92.31

PPC

RF 96.95 96.93

KNN 87.50 88.79

SVM 96.86 96.85

Unknown

RF 98.59 98.52

KNN 69.28 74.73

SVM 97.77 98.30

2) Feature selection result: Fig. 5 shows the results of

our cross-platform performance evaluation for each experi-

ment setting, including the accuracy of known and unknown

malware classification, feature dimension, and how many files

can obtain the selected features. The feature selection setting

corresponding to each line in the table is summarized follows.

(a) Removing redundant and irrelevant features.

(b) Selecting the top-1000 strings with higher scores using

RFE.

(c) Using DFrank scores to rank the most import strings for

each malware family with high ranked strings selected.

(d) Combining strings selected by methods (b) and (c).

(e) Applying RFE to results in (d) and selecting high ranking

features.

(f) Applying setting (c) to select 20,000 features from each

family and performing RFE ranking.

In setting (a), we deleted unimportant features and reduced

the feature dimension from 14 million to 210K, with train-

ing cost reduced significantly. The classifier trained on the

remaining string features achieved an average accuracy of

98.37%, and it maintained an average accuracy of 97.2% when

predicting malware in the testing set.
In setting (b), RFE was applied to obtain top ranking string

features, after the feature selection, the accuracy rate rose to

98.59%. This setting yielded 97.87% prediction accuracy on

unknown platforms, which is a remarkable improvement as

compared with setting (a). Note, RFE did not take account of

cross-platform capabilities when selecting features.
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Fig. 5. Performance comparison of feature selection settings

TABLE III
COMPARISON OF TRAINING COMPLEXITY BEFORE AND AFTER FEATURE

SELECTION

Before feature selection After feature selection

Feature
Dimension

Training
Time (s)

Accuracy
(%)

Feature
Dimension

Training
Time (s)

Accuracy
(%)

RF

14,530,806

100,557 97.95

2,193

140 98.34

KNN 4,391 97.12 340 98.03

SVM 85,819 97.45 46 98.36

In setting (c), we selected string features with more cross-

platform capability by considering the cross-platform charac-

teristics; however, approximately 20K malware samples did

not contain the string selected by this method, which resulted

in reduced accuracy rates on the training and testing sets as

96.63% and 97.15%, respectively.

In setting (d), by combining the strings of from (b) and

(c), we obtained strings that were easy to extract and had

cross-platform capability. Here, malware classification accu-

racy rates of 98.59% and 97.33% were obtained on the training

and testing sets.

Then, with setting (e), we performed additional RFE feature

selection for the features selected by setting (d). Here, cross-

platform performance was improved to 97.99%.

Finally, we used setting (c) to select 20,000 features and

applied RFE to select the top 2,000 features. Average accuracy

rates of 98.24% and 98.00% were obtained on the training and

test sets, respectively.

As shown in Fig. 5, setting (f) demonstrates the high-

est cross-platform classification accuracy among all feature

selection settings. Table III shows that the dimensionality

of our feature vector was up to 14 million before feature

selection, which caused excessive training time. Feature se-

lection reduced the dimensionality of the vectors to 2,361 via

feature selection, resulting in greatly reduced training time and

improved accuracy.

TABLE IV
CROSS-PLATFORM CLASSIFICATION RESULTS OF DIFFERENT ML

METHODS BASED ON PRINTABLE STRING

CPU architecture Algorithm Accuracy(%) F1-measure(%)

Training Set
X86 + ARM + MIPS

RF 98.34 98.33

KNN 98.03 98.01

SVM 98.36 98.34

NB 97.03 97.01

MLP 98.35 98.34

Testing Set

SPARC

RF 98.40 98.41

KNN 98.17 98.18

SVM 97.95 97.96

NB 96.90 96.92

MLP 98.37 98.37

X86-64

RF 96.54 96.58

KNN 94.80 94.59

SVM 96.83 96.87

NB 95.39 95.46

MLP 96.74 96.78

PPC

RF 98.49 98.51

KNN 98.36 98.38

SVM 98.78 98.78

NB 96.68 96.83

MLP 99.28 99.35

Unknown

RF 99.49 99.49

KNN 99.15 99.18

SVM 99.04 99.13

NB 95.48 95.45

MLP 98.52 98.53

3) Comparison of common machine learning algorithms:
In addition to selecting important features, choosing appro-

priate machine learning algorithms also greatly affect the

generalization performance. Here, we compare five common

machine learning algorithms, namely, RF, KNN, SVM, naive

Bayes (NB), and multilayer perceptron (MLP). The results

are shown in Table IV. On the training set, with the exception

of NB which obtained an accuracy rate of only 97%, these

algorithms reached an accuracy rate of 98%. Moreover, all

algorithms performed fairly well on classifying malware with

unknown CPU architectures. Among them, RF demonstrated

the best average accuracy, and NB showed inferior perfor-

mance compared to other algorithms.

D. Comparison of static features

In this experiment, we compare the cross-platform per-

formance of the proposed method with classifiers built on

features extracted from two other static analysis methods. We

trained the classifiers based on printable string, opcode, and the

ELF header with 10-fold cross-validation and evaluated their

performance. The N -gram representation can take account of

the continuity of the opcode sequence, it has be widely adopted

in opcode-based analysis [25, 26]. On the other hand, ELF

header is proofed to have excellent generalization performance

for malware family classification, despite of the fact that it

relies heavily on the CPU architecture. Note that feature vector

extraction for opcode [17] and ELF header [18] are described

in Section II.
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TABLE V
CROSS-PLATFORM CLASSIFICATION RESULTS BASED ON DIFFERENT STATIC FEATURES

CPU architecture Algorithm
String Opcode [17] ELF header [18]

Accuracy(%) F1-measure(%) Accuracy(%) F1-measure(%) Accuracy(%) F1-measure(%)

Training Set X86 + ARM + MIPS

RF 98.34 98.33 96.23 96.20 98.80 98.79

KNN 98.03 98.01 95.83 95.81 94.01 93.96

SVM 98.36 98.34 96.09 96.05 94.35 94.15

Testing Set

SPARC

RF 98.40 98.41 53.66 43.68 91.88 91.65

KNN 98.17 98.18 0.46 0.91 78.56 79.29

SVM 97.95 97.96 15.78 16.43 93.05 92.78

X86-64

RF 96.54 96.58 85.38 84.78 76.54 77.33

KNN 94.80 94.59 79.79 80.95 71.71 72.22

SVM 96.83 96.87 67.82 67.69 86.94 85.32

PowerPC

RF 98.49 98.51 7.97 8.10 85.77 85.29

KNN 98.36 98.38 11.84 16.76 80.24 79.84

SVM 98.78 98.78 35.57 45.87 93.79 93.22

Unknown

RF 99.49 99.49 25.50 29.20 76.41 72.18

KNN 99.15 99.18 0.23 0.46 65.32 58.72

SVM 99.04 99.13 9.41 13.89 80.93 78.89

The performance comparison result is shown in Table V.

As shown in the table, on the training set, classifiers based on

printable string features achieved optimal accuracy of 98.34%,

while classifiers based on opcode and ELF header features

obtained optimal accuracy rates as 96.23% and 98.80%, re-

spectively. However, on the testing set, the performance of the

classifier trained based on opcode and ELF header features

degenerated significantly, obtaining average accuracy rates of

32.78% and 81.76%, respectively. In contrast, the printable-

string-based classifier maintained an average accuracy of 98%.

The result indicates that, when predicting malware of a new

CPU architecture, printable string features demonstrate good

cross-platform classification capabilities. However, the fea-

ture vectors created from opcodes and ELF headers changed

significantly due to the different instructions and structures

in each architecture, resulting in a significant degeneration

in prediction accuracy. The classifier trained using printable

strings can make predictions on various platforms, thereby

making IoT malware easy to detect on heterogeneous devices.

VI. CONCLUSION

In this paper, we have proposed a method for effective

cross-platform analysis of IoT malware. We collected ELF

files of IoT malware, extracted printable strings from ELF

binaries, and obtained useful features through different feature

selection methods. We classified the malware family using the

RF, KNN, and SVM algorithms. We obtained an accuracy rate

of 98% in the training set and maintained an accuracy rate of

94% to 99% in our cross-platform analyses. The experimental

results demonstrate that the proposed method can effectively

differentiate malware across different platforms, and the easy-

to-extract string allows us to develop a lightweight system for

classification tasks.
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