
Measurement Study Towards a Unified Firmware
Updating Scheme for Legacy IoT Devices

Bing-Kai Hong∗, Jr-Wei Huang∗, Tao Ban†, Ryoichi Isawa†, Shin-Ming Cheng∗, Daisuke Inoue†, Koji Nakao†
∗National Taiwan University of Science and Technology, Taipei, Taiwan

{M10315020, B10415030, smcheng}@mail.ntust.edu.tw
†National Institute of Information and Communications Technology, Tokyo, Japan

{bantao, isawa, dai, ko-nakao}@nict.go.jp

Abstract—This paper provides a measurement study on the IoT
firmware. Based on a thorough review of the state of art of IoT
firmware emulation and vulnerability scan tools and techniques,
we propose a unified framework that could monitor the security
status of users’ IoT devices and keep the device firmware up to
date to prevent malware infection. Towards this goal, we conduct
a measurement study on an IoT firmware image set obtained
from three major vendors. The result of the measurement study
indicates that the market is in a pressing need of such a universal
framework for improving the security situation of a mass of
vulnerable IoT devices.

Index Terms—IoT firmware update, virtualization, vulnerabil-
ity scan

I. INTRODUCTION

A. Introduction

The past decade has witnessed the fast adventure of the

ecosystem of discrete computing devices know as Internet of

Things (IoT). By drastically changing the way we generate

and make use of data, IOT had brought forth new and trans-

formative opportunities for e-business and industry alike and

led to significant improvements in efficiency, productivity,

profitability, decision-making and effectiveness [1].

As the proliferation of IoT continues—it is estimated to

reach 50 billion connected devices by 2020, and the number

will be ten times more by 2030 [2]—cyberthreats towards it

are also on the rise: According to a survey by Kaspersky, in

the first half of 2018, over 120,000 new malware targeting

IoT are discovered, which is three times the number of 2017

and ten times of that of 2016 [3]. Moreover, the threat level

for IoT malware also rises rapidly due to the emergence of

IoT malware that targets critical Internet infrastructure and

the wide application of vulnerable IoT devices to high-risk

environments such as health and safety industries. Unfortu-

nately, very few countries have regulations for IoT devices.

Moreover, it is not always a primary concern for device

vendors in a rush to sell the equipment: Making devices more

secure can add time and cost to product development [4]. As

summarize in a Symantec report [5], IoT security have to treat

with the following challenges new from past practices with

conventional computer systems.

• Extraordinary large number of endpoints to monitor;

• Lack of identity or permission management;

• Ample amount of inherently unprotected devices (e.g.,

RFID tags and sensors can be read and hacked easily);

• All devices have IP addresses which means they can be

discovered and hacked;

• Low-energy devices do not have power or storage to

negotiate complicated handshake protocols or store en-

cryption keys; and

• Ease-of-use is preferred over security when designing IoT

compatible devices.

As with computers, IoT devices commonly require security

patches and updates, hereafter referred as firmware updating,

to protect against known vulnerabilities and attacks from

outsiders. Other incentives of firmware update include bug

fixing, configurations upgrading, and services implantation.

Despite the importance of firmware updating, it is unlikely

that regular firmware updating can be included as a part of the

contract when a user acquires an IoT device. The situation is

even worse due to the lack of a unified, user-friendly interface

to update multiple devices. As the consequence of lack of

regular firmware updates, a large swarm of outdated legacy

IoT devices are command & controlled by the IoT botnets

such as Mirai and Hajime to launch attacks towards critical

Internet infrastructure [6].
There is a pressing need to design and implement an

effective and efficient paradigm for firmware updating. Also,

there have been some attempts aiming at this goal [7]. An

ideal solution to firmware update could be a fully automated

process in an authenticated channel where device vendors can

hot-fix the security vulnerabilities of the devices deployed at

the users’ environment. However, there seems to be a long

way to have this solution implemented with all connected IoT

devices as long as the legacy devices considered.
In this paper, we propose a unified firmware update scheme

that keeps the user regularly informed about the security sit-

uation of his/her IoT devices and provide operational support

when applicable. Implemented as a system that integrates

functionalities including security vulnerability database and

a portal of firmware configuration, it tracks the vulnerability

information of the registered devices and presents it to the

user in an easy to understand way. Based on the information,

the user can obtain the most recent security status information

about the devices (e.g., the release of new firmware patches

9

2019 14th Asia Joint Conference on Information Security (AsiaJCIS)

978-1-7281-2556-5/19/$31.00 ©2019 IEEE
DOI 10.1109/AsiaJCIS.2019.00010

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on May 06,2020 at 09:55:12 UTC from IEEE Xplore. Restrictions apply.

and known vulnerabilities) and choose the timing to update

the firmware.

The feature of the new scheme is highlighted as follows.

• First, the scheme can cover a wide range of IoT devices

and provide an appropriate level of services (e.g., in-

formation such as security status and operation such as

firmware update) pertinent to the user’s request and the

device’s functional capability.

• Second, by integrating well-known vulnerability

databases and state-of-the-art emulation and

vulnerability-scan tools, it aims at a coverage of

well studied and new vulnerabilities as complete as

possible.

• Finally, it supports a unified, user-friendly interface (e.g.,

a mobile application) so that security status and vulnera-

bility information of registered devices can be conveyed

smoothly to the user for decision making.

This paper is structured as follows: Section II surveys

related work. Section III describes our system framework in

detail. Section IV provides the results of a measurement study

of current IoT market. Section V gives some discussions on

the limitation of the work. Section VI concludes the paper.

II. RELATED WORK

In this section, we survey some related work that serve as

implementation components of the proposed scheme: security

vulnerability databases which can serve as trustable informa-

tion sources of vulnerability information of the devices, emu-

lation tools to build hosting environment for the firmware and

simulate the function of the firmware for deep inspection, and

firmware vulnerability scanning tools that could automatically

generate vulnerability report for a firmware that is new to the

system.

A. Vulnerability Databases

NVD (National Vulnerability Database) is the U.S. govern-

ment repository of standards based vulnerability management

data [8], which was launched by NIST (National Institute of

Standards and Technology) in 2005. It includes a software-

vulnerability database synchronized with the CVE (Common

Vulnerabilities and Exposures) list [9], and any analysts in the

world can submit an entry of a newly found vulnerability to the

CVE list. When any updates to CVE appear, the vulnerability

database in NVD is also soon updated by NVD analysts.

The vulnerability database in NVD contains some entries

of, for example, an attack vector (e.g., Network and Local),
a base score of severity (e.g., 5.3 MEDIUM and 7.1 HIGH),

and a description corresponding to a vulnerability of products.

For this database, a search engine named Search Common
Platform Enumerations (CPE) is provided via NVD’s web-

site1, and, through CPE, the vulnerability check of an IoT

device can be done by inputting a product version (e.g., dap-
2360 and p-660hw d3) to be checked. If a product has any

1https://nvd.nist.gov/products/cpe/search

registered vulnerabilities, the search result will list the entries

corresponding to those vulnerabilities.

Similar to NVD, our system possesses a vulnerability

database, so our system can give a good collaboration by

(manually) feeding the vulnerabilities found by our system

as entries to CVE; this contributes to keeping the freshness of

CVE and the vulnerability database in NVD.

B. Firmware emulation

Firmware emulation enables analysts to run firmware im-

ages without actually having any IoT devices, and they can

conduct vulnerability checks against those running firmware

images. This is very reasonable and efficient since the analysts

are not required to purchase the devices. In this section, we

introduce three ways to emulate firmware images.

The first is a way of combining Linux commands as

follows. After obtaining a Linux-embedded firmware im-

age typically from a vendor’s website, an analyst extracts

root-system files from the image such as /bin/busybox,

/dev/console, and /sbin/httpd with an extractor.

For example, extract-ng.sh2, a bash script for extrac-

tion, automatically extracts such root-system files by exe-

cuting some Linux commands including binwalk3 and dd.

The analyst then executes extracted programs to fuzz. Ex-

amples of those programs include httpd, a daemon of web

server, and it will be emulated with QEMU as “chroot .
./qemu-mips-static sbin/httpd”, where chroot
temporally changes the system root directory to the current

directory with the argument “.” and qemu-mips-static
is an emulator to run a MIPS-version of httpd in sbin (as

“/sbin/httpd”) on a Linux running on another CPU architecture

like x86 64.

The second way is to use Avatar [10], a framework

that adopts a hybrid approach combining Linux-embedded

firmware emulation with physical IoT devices to be analyzed.

Usually, the firmware exchanges some messages with hard-

ware components (e.g., Ethernet and field bus) embedded in

the physical IoT device, and the firmware could stop running

if the emulated hardware does not respond to a message

from the firmware. To treat with this, when Avatar receives

a message from the firmware, it forwards the message to the

physical device. Avatar also forwards a response sent from the

physical device to the firmware. At this time, Avatar can fuzz

the firmware with fuzzing functionality implemented in the

firmware emulation of Avatar. This is a significant advantage

of the hybrid approach, which means implementing the fuzzing

in the emulation part is much easier than in the physical IoT

device.

The last is to use Firmadyne, an automated system that

performs emulation and dynamic analysis of Linux-based

embedded firmware without any physical IoT devices [11].

It includes (software) components for firmware emulation like

a user-space NVRAM (nonvolatile random-access memory)

2https://github.com/lattera/dd-wrt
3https://tools.kali.org/forensics/binwalk

10

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on May 06,2020 at 09:55:12 UTC from IEEE Xplore. Restrictions apply.

library and modified kernels for MIPS and ARM, respectively.

When emulating firmware, Firmadyne first extracts root sys-

tem files from the firmware image by using binwalk, and

then it executes those extracted programs with a modified

kernel on QEMU. It also possesses a script that can check

the emulated firmware for 60 known vulnerabilities using

exploits from Metasploit [12] and 14 previously-unknown

vulnerabilities discovered by the developers of Firmadyne.

For the measurement study in this paper, we adopt and mod-

ify Firmadyne because it unifies Linux commands, including

binwalk and it also does not require any physical devices.

The modification enables the checking for more vulnerabilities

with Routersploit [13] and other tools.

C. IoT firmware vulnerability scan

Firmware vulnerability scan methods can be divided into

static-analysis-based and dynamic-analysis-based.

1) Static-analysis-based approaches: Firmware vulnerabil-

ity scan methods are usually categorized into static analysis

and dynamic analysis.

2) Static-analysis-based approaches: Static analysis in-

volves no dynamic execution of the firmware under test and

can detect possible defects in an early stage, before running

the firmware in an emulation environment which is usually

complicated. Examples of this kind of methods include Wang

et al.’s method [14] and Firmalice [15]. Wang et al.’s method

constructs a model based on known vulnerable functions as

training data, which is used to check if firmware involves

vulnerable functions. Firmalice focuses on a privileged opera-

tion in the firmware like system(input("command:"))
executed in control statements (e.g., if-else and switch),

and it shows a control flow graph that contains a privileged

program point with the input required to trigger the bypass

(i.e. a control flow to a backdoor).

3) Dynamic-analysis-based approaches: Dynamic analysis

executes firmware in a testing environment and directly trace

its execution while checking for vulnerabilities. There are

three methods specialized for web services running follow-

ing this idea: Arachni [16], Zed Attack Proxy (ZAP) [17],

and w3af [18]. These methods send a particular payload to

a web service for triggering service errors such as buffer

overflow, (remote) code execution, and command injection.

IoTFuzzer [19] and Firmadyne [11] provide functions to trace

services other than web services. Targeting IoT devices that are

controlled by mobile applications (e.g., IP cameras, printers,

and smart plugs), IoTFuzzer extracts commands from mobile

applications, which are used to communicate between mobile

applications and IoT devices. Based on these commands,

IoTFuzzer checks IoT devices with the fuzzed payload for

discovering memory-corruption vulnerabilities. As is briefly

introduced in section II.B, Firmadyne [11] can also check IoT

devices for vulnerabilities with firmware emulation.

In this paper, we adopt Firmadyne from the above systems

to check a wide variety of IoT devices. Our system treats with

IoT devices that are not controlled by mobile applications.

Also, our system aims to check as many services as possible

in addition to web services.

III. SYSTEM FRAMEWORK

The IoT consists of all kinds of devices from legacy devices

lack of regular firmware updates to new IoT devices with

a secure firmware update architecture implemented following

the most recent guidelines such as those described in [7]. In

Fig. 1, we illustrate a firmware update scheme that tries to

manage the automation of firmware updating to a range of

IoT devices as wide as possible.

A. Components in the Scheme

• User: The user is the authenticated operator of a fleet of

IoT devices. In the scheme, the user is required to inter-

act with other entities. He/she can provide and receive

the necessary information to and from other entities in

the environment, and then make decisions about system

operations such as firmware updating. Meantime, the

scheme is designed to provide pertinent information to

the user to enable smart decision making as relief from

the operational burden. In any case, firmware updating

will only be performed with the user’s consent.

• Device: A device refers to the entire IoT product con-

nected to the Internet to implement a designated function,

regardless of its implementation detail. In general, we

assume the user has at least network access to collect

related information from the device and to issue the

command to perform firmware updating.

• Status Tracker: The status tracker offers device manage-

ment function to monitor the firmware update process.

A status a tracker may, for example, want to know the

current state of the firmware update cycle of the device.

As operation automation could be implemented based

on appropriate status information of the IoT device, the

status tracker plays an essential part in the proposed

scheme. Ideally, an intelligent status tracker provides

device management function to monitor the firmware

update process, and send such information to the agent

to enable more services.

• Agent: The agent, which interacts with most of the

entities, is the core component in the scheme. It is an

interpreter of publicly available vulnerability database

system that provides the vulnerability information of

registered IoT devices to the user. When a previously

unknown IoT device is registered, the agent can also

initiate a vulnerability scanner to obtain the vulnerability

information.

• Vulnerability database: The vulnerability database serves

as the information source of device vulnerabilities. Search

results from public vulnerability database such as NVD

will be reinterpreted by the agent to provide device-

specific vulnerability to the user.

• Vulnerability scanner: The vulnerability scanner is com-

posed of a crawler, an emulator, and a vulnerability

scanner. The crawler proactively searches out for the

11

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on May 06,2020 at 09:55:12 UTC from IEEE Xplore. Restrictions apply.

newest firmware images from IoT device vendor repos-

itories. The emulator provides the running environment

of the firmware. The vulnerability scan tools generate

vulnerability report for the firmware.

B. Interactions of the component

The proposed scheme follows the general guideline below.

The user provides information about the devices; the system

will continuously monitor the latest update of the firmware

and provide information to the user if any vulnerability of

the registered devices is detected. Then it will try to acquire

the user’s consent so that firmware updating could be enabled

efficiently. In the following, we define the interactions between

the entities defined in the previous section. Base on the

functional capability of the device, five levels of automation

are defined.

• Level 1, Offline devices: the user could only get the

model number and firmware number of the device by

some documents like a manual. The user could even have

not physical access to the device, but they need to be

kept informed about the security status of the device.

This category of devices include devices with missing

manuals, hijacked devices, and devices of interest for

information gathering. For these devices, the agent can

provide information such as the security status of the

devices. No operational functions will be provided.

• Level 2, Online: the device provides some means (e.g.,

API) for retrieving the device information through a

network connection. These devices include legacy IoT

devices accessible from a private network or the Internet.

For these devices, similar to the previous level, the agent

can provide information such as the security status of the

devices. No operational functions will be provided.

• Level 3, Remote operational: the device provides some

means (e.g., command line tools) to perform firmware

update from a network connection. For these network

accessible and configurable IoT devices, in addition to

security information provision, the agent can also redirect

the user to the network-based configuration tool to enable

firmware updating.

• Level 4, Advanced remote controllable: the device is

implemented with a unified API that supports network-

based access and control. For these devices, the agent can

provide a unified authentication and firmware updating

mechanism. Firmware updating will be enabled with the

user’s consent.

• Level 5, Advanced remote controllable: the device is

implemented with an advanced firmware updating infras-

tructure that could support full automation, e.g., with the

architecture in [7] implemented. For these devices, the

agent can provide a unified authentication mechanism.

It will call the firmware updating routine after user’s

consent is approved.

Fig. 1. The overview of our system framework.

C. Implementation

In this section, we present the implementation detail of the

proposed scheme.

1) Implementation of web crawler: Our scheme is designed

to detect the new firmware as soon as its release. As the

firmware image download method provided by the vendors

are different from each other. Some vendors prefer providing

download links with FTP services, while others prefer provid-

ing product list only so that we have to access the product web

page and find the download link. We create a web crawler to

treat with different ways of firmware image distribution from

vendors.

2) Implementation of database: We store detail firmware

data (such as vendor, device type, model number, CPU

architecture, firmware version number) and analysis results

(such as vulnerability results provided by scanning tools and

information retrieved from the vulnerability databases) to the

database, so other system components can easily access the

data.

3) Implementation of vulnerability scan: Our vulnerability

analysis makes use of three open source tools. For vulner-

abilities related to IoT devices, web service is important

because most IoT devices let the user use the website to do

the configuration. We make use of two web scanners. The

first is Arachni, whose function is powerful and can detect

many kinds of vulnerabilities such as OWASP top 10, side

channel attacks. The second is w3af, which is popular among

web-service vulnerability scanning tools. Finally, we choose

Routersploit [13] to detect vulnerabilities on other services

like FTP, telnet, and ssh, etc. By using these tools, we can

detect most of the vulnerabilities on the web service and other

popular services hosted by the IoT devices.

IV. MEASUREMENT STUDY

This section presents the result of a measurement study

on firmware updating. We try to obtain an overall picture of

the security situation of the IoT firmware repositories on the

market.

A. Statistics on vendor, device type, and CPU architecture.

We use a crawler to download the firmware images from

three major IoT device vendors’ (hereafter referred to as ven-

dor A, B and C) firmware repositories. For the measurement

study, we download a total number of 15,839 firmware image

12

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on May 06,2020 at 09:55:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Access success rate of firmware images.

files. After using the hash functions to check the uniqueness of

the images files, we got 10,986 unique image files. Next, we

try to identify the firmware architectures of the firmware using

binwalk, and use emulation tool to boot up the firmware. As a

result, we find that 7.5% of all firmware images are recognized

as ARM-base firmware and boot up successfully, and 16.3%

of them are recognized as MIPS-base firmware and boot up

successfully.

There have been many errors encountered during the process

when a simulation tool emulates a firmware. A short list of

the system errors includes boot up errors, IP address getting

errors, network errors, service error, and so forth. We use the

ping command, to send ICMP requests to the firmware images

that have successfully booted up and find that 204 of vendor

A’s firmware, 206 of vendor B’s firmware and 251 of vendor

C’s firmware are accessed successfully. The success rate of

booting up is summarized in Fig. 2.

We divided the firmware images according to the imple-

mentation CPU architectures to show each vendor’s product

distribution. As can be seen from the result in Fig. 3, for all the

three vendors, ARM and MIPS enjoy much higher popularity

than other CPU architectures. Based on the model name of

the firmware images, our crawler also can identify the IoT

device types. As shown in Fig. 4, the firmware images can be

divided into three categories. For the first router category, only

vendor A and vendor C have devices released. The second and

third categories are access points and switches, respectively.

For vendor A, it has almost uniform distribution among the

three categories. However, for the other vendors, they have a

specific preference on the type of device they produce.

B. Results on emulation success rate and open service port.

Fig. 5 illustrate our port scan result. After using ping
command to check the firmware’s networking setting, we have

667 firmware images which can response the ICMP requests.

Next, we use NMAP to scan the firmware and show the top

10 open ports. The result indicates that 50.4% of IoT devices

Fig. 3. Distribution of firmware images on different CPU architectures.

Fig. 4. Type of IoT devices.

support web service hosted at ports 80 and 443. However,

only 21.6% of IoT devices which use HTTPS on port 443

are considered secure. More access point devices tend to open

port 443 than router devices. Port 53 is DNS service, which is

supported by 30.7% of devices. As we can see router devices

takes a large proportion of port 53. DNS service could often

be a hacker’s target. Ports 22 and 23 are for remote access

service, ssh and telnet, respectively. These two services are

supported by 46.3% of devices which often be attacked by

some IoT malware using a brute-force attack; ssh service is

considered safer than telnet service because telnet service does

not use any security mechanism, such as authentication and

data encryption. In the figure, we can see only a few access

point devices have supported the ssh remote access service.

C. Case study: vulnerability tracking during version up

Next, we study about the relationship between firmware

versions and vulnerability numbers. We pick up four IoT

devices to trace their versions and number of vulnerabilities.

13

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on May 06,2020 at 09:55:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Port scan result.

The first IoT device is in Fig. 6(a). As we can see, two

vulnerabilities appeared from version 1.1.0.14 of firmware and

were repaired on version 1.1.0.26. After that, we find no more

vulnerabilities. The second device is on fig. 6(b). In the

beginning, the vulnerability was discovered at version 1.00,

and at version 1.08, the vulnerability still existed. Besides,

version 1.08 also introduced the second vulnerability the

latest version 1.09 repaired firmware vulnerabilities of the

device. The third IoT device is on fig. 6(c). This device

exposed two vulnerabilities at version 2.10. Until now, the

latest firmware still has the same vulnerabilities. For the

result of the 4th device in fig. 6(d), the authorization-bypass

vulnerability existed for a long time until version 2.00. Also,

we can see the cross-site-request-forgery vulnerability, was

unstable between the versions. Maybe, this is because the

vendors did not do some vulnerability analysis before pulling

a new firmware version. The four figures show how essential

firmware update is: each firmware version may bring forth

difference vulnerabilities. User must make sure the router’s

version is the latest to ensure protection. However, sometimes

the latest firmware still has un-fixed vulnerabilities. So our

framework plays an essential role in this situation. We detect

user’s firmware version to keep the firmware always updated

to the latest version and detect the firmware vulnerability to

make the latest firmware more secure.

D. Limitations

At the moment, due to numerous technical difficulties, we

cannot fully emulate all the firmware image files. Some of the

reasons are listed below.

Due to the firmware image set we have at hand, the

measurement study is performed mainly on the 32-bit CPU

architectures, analysis for other 64-bit CPU architectures such

as MIPS64, ARM64, is left as future work. We still lack some

efficient means to emulate the software and hardware envi-

ronments for CPU architectures such as ARM. The success

rate on other CPU architectures also will be improved using

(a) first IoT device

(b) second IoT device

(c) third IoT device

(d) fourth IoT device

Fig. 6. Vulnerability improvement of the IoT devices.

14

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on May 06,2020 at 09:55:12 UTC from IEEE Xplore. Restrictions apply.

an increased variation of hosting environments. The proposed

framework automates the flow of simulation and analysis, an

automated scheme to identify and record the reason for the

failure of the emulation will be pursued in future work.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a unified scheme which could

help with the management of IoT devices at user environments.

Based on the operational functionality of the IoT devices at

hand, we can provide a different level of security information

and operation support for improving the security status of

the IoT devices. We expect the proposed scheme can help

to improve the security situation of IoT devices, especially for

the legacy devices that do not have some advanced firmware

updating architecture implemented.

A. Future work

Due to the firmware image set we have at hand, the

measurement study is performed mainly on the 32-bit CPU

architectures, analysis for other 64-bit CPU architectures such

as MIPS64, ARM64, is left as future work. We still lack some

efficient means to emulate the software and hardware envi-

ronments for CPU architectures such as ARM. The success

rate on other CPU architectures also will be improved using

an increased variation of hosting environments. The proposed

framework automates the flow of simulation and analysis, an

automated scheme to identify and record the reason for the

failure of the emulation will be pursued in future work.

In the current framework, the user has to input the firmware

version to the system. However, manual operation may lead to

unpredictable errors during this process. An automated mech-

anism to retrieve the devices information and firmware version

information will significantly improve the user experience.

Depend on the functionality the IoT devices support, automa-

tion of this process will be pursued in two directions. First,

the login pages of an IoT device often contains identifying

information of the device; information retrieval based on text

processing of the login page could be a feasible approach to

the acquisition of device information. Second, some vendors

provide the APIs which can interact with the IoT device; we

can make use such APIs to obtain the device information.

REFERENCES

[1] P. Fraga-Lamas, T. M. Fernández-Caramés, M. Suárez-

Albela, L. Castedo, and M. González-López, “A review

on internet of things for defense and public safety,” in

Sensors, 2016.

[2] A. D. Joseph Bradley, Christopher Reberger

and V. Gupta, “Internet of everything: A

$4.6 trillion public-sector opportunity,” 2013,

https://www.cisco.com/c/dam/enus/about/business −
insights/docs/ioe − public − sector − vas − whit −
paper.pdf [Online; lastaccesseddate : 11−April − 2019].

[3] V. K. Mikhail Kuzin, Yaroslav Shmelev, “New

trends in the world of iot threats,” September

2018, https://securelist.com/new-trends-in-the-world-of-

iot-threats/87991/ [Online; posted 18-September-2018].

[4] R. Metz, “Mit technology review,” August 2013,

https://www.technologyreview.com/profile/rachel-metz/

[Online; last accessed date: 11-April-2019].

[5] “Internet security threat report,” April 2016,

https://www.symantec.com/content/dam/symantec/docs/reports/istr-

21-2016-en.pdf [Online; last accessed date: 11-April-

2019].

[6] S. Ozawa, T. Ban, N. Hashimoto, J. Nakazato, and

J. Shimamura, “A study of iot malware activities using

association rule learning for darknet sensor data,” Inter-
national Journal of Information Security, 2019, to appear.

[7] B. Moran, M. Meriac, H. Tschofenig, and D. Brown,

“A firmware update architecture for internet of things

devices,” April 2019, https://tools.ietf.org/pdf/draft-ietf-

suit-architecture-05.pdf.

[8] NIST (National Institute of Standards and Tech-

nology), “NVD (National Vulnerability Database),”

https://nvd.nist.gov.

[9] The MITRE Corporation, “CVE (Common Vulnerabili-

ties and Exposures),” https://cve.mitre.org/index.html.

[10] M. Muench, D. Nisi, A. Francillon, and D. Balzarotti,

“Avatar 2: A multi-target orchestration platform,” in Proc.
Workshop Binary Anal. Res.(Colocated NDSS Symp.),
vol. 18, 2018, pp. 1–11.

[11] D. D. Chen, M. Woo, D. Brumley, and M. Egele,

“Towards automated dynamic analysis for linux-based

embedded firmware.” in NDSS, 2016, pp. 1–16.

[12] Rapid7, “metasploit,” https://www.metasploit.com.

[13] threat9, “Exploitation Framework for Embedded De-

vices,” https://github.com/threat9/routersploit.

[14] Y. Wang, J. Shen, J. Lin, and R. Lou, “Staged method

of code similarity analysis for firmware vulnerability

detection,” IEEE Access, vol. 7, pp. 14 171–14 185, 2019.

[15] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and

G. Vigna, “Firmalice-automatic detection of authentica-

tion bypass vulnerabilities in binary firmware.” in NDSS,

2015.

[16] T. Laskos, “Web application security scanner frame-

work,” https://www.arachni-scanner.com/.

[17] S. Bennetts, “Owasp zed attack proxy,” AppSec USA,

2013.

[18] “w3af - Open Source Web Application Security Scanner,”

http://w3af.org/.

[19] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang,

W. C. Lau, M. Sun, R. Yang, and K. Zhang, “Iotfuzzer:

Discovering memory corruptions in iot through app-

based fuzzing,” Proc. 2018 NDSS, San Diego, CA, 2018.

15

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on May 06,2020 at 09:55:12 UTC from IEEE Xplore. Restrictions apply.

