Optimal Binary Search Trees

Kuan-Yu Chen (陳冠宇)

2019/05/01 @ TR-310-1, NTUST

Review

- Given two sequences X and Y, we say that a sequence Z is a *common subsequence* of X and Y if Z is a subsequence of both X and Y
 - $-X = \{A, B, C, B, D, A, B\}$
 - $Y = \{B, D, C, A, B, A\}$
 - $Z = \{B, C, A\}$ is a common subsequence of both X and Y
 - It is worthy to note that {B, C, B, A} is also a common subsequence of both X and Y
 - Since X and Y have no common subsequence of length 5 or greater, thus {B, C, B, A} is an longest-common-subsequence of both X and Y

Optimal Binary Search Trees.

- A binary search tree, also known as an **ordered binary tree**, is a variant of binary trees in which the nodes are arranged in an order
 - All the nodes in the left sub-tree have a value less than that of the root node
 - All the nodes in the right sub-tree have a value either equal to or greater than the root node

Optimal Binary Search Trees..

- Formally, given a sequence $K = \{k_1, k_2, ..., k_n\}$ of n distinct keys in sorted order
 - That is $k_1 < k_2 < \dots < k_n$
 - For each key k_i , we have a probability p_i that a search will be
 - It should also be mentioned that some searches may be for values not in K
 - We assume that there are n + 1 dummy keys, $\{d_0, d_1, \dots, d_n\}$
 - d_0 represents all values less than k_1
 - d_n represents all values greater than k_n
 - d_i represents all values between k_i and k_{i+1}
 - For each dummy key d_i , we have a probability q_i that a search will be
 - Every search is either successful (finding some key k_i) or unsuccessful (finding some dummy key d_i)

$$\sum_{i=1}^{n} p_i + \sum_{i=0}^{n} q_i = 1$$
4

 $\left(d_{0}\right)$

 $\left(d_{1} \right)$

 k_{Δ}

 d_{4}

 d_3

Optimal Binary Search Trees...

- Because we have probabilities of searches for each key and each dummy key, we can determine the expected cost of a search in a given binary search tree *T*
 - Let's assume that the actual cost of a search equals the number of nodes examined
 - The depth of the node found by the search in *T*, plus 1

$$E[\text{search cost in } T] = \sum_{i=1}^{n} (\text{depth}_{T}(k_{i}) + 1) \times p_{i} + \sum_{i=0}^{n} (\text{depth}_{T}(d_{i}) + 1) \times q_{i}$$
$$= 1 + \sum_{i=1}^{n} \text{depth}_{T}(k_{i}) \times p_{i} + \sum_{i=0}^{n} \text{depth}_{T}(d_{i}) \times q_{i}$$

Example – 1

• For a given binary search tree and its search probability table, we can calculate the expected cost of the tree

$$\mathbb{E}[\operatorname{search} \operatorname{cost} \operatorname{in} T] = \sum_{i=1}^{n} (\operatorname{depth}_{T}(k_{i}) + 1) \times p_{i} + \sum_{i=0}^{n} (\operatorname{depth}_{T}(d_{i}) + 1) \times q_{i} = 2.8$$

		(k_2)					node	depth	probability	contribution
	_ /						k_1	1	0.15	0.30
$\begin{pmatrix} k_1 \end{pmatrix}$ $\begin{pmatrix} k_4 \end{pmatrix}$								0	0.10	0.10
/	\sim	/	$/ \sim$				k_3	2	0.05	0.15
d_0 d_1 k_3 k_5							k_4	1	0.10	0.20
\bigcirc								2	0.20	0.60
	(\overrightarrow{d}	\overline{I} \overline{I}	$ \leq $			d_{0}	2	0.05	0.15
				4 45			d_1	2	0.10	0.30
							d_2	3	0.05	0.20
							d_3	3	0.05	0.20
i	0	1	2	3	4	5	d_4	3	0.05	0.20
<i>p</i> _i		0.15	0.10	0.05	0.10	0.20	d_5	3	0.10	0.40
q_i	0.05	0.10	0.05	0.05	0.05	0.10	Total			2.80

Example – 2

• For a given binary search tree and its search probability table, we can calculate the expected cost of the tree

$$\mathbb{E}[\text{search cost in } T] = \sum_{i=1}^{n} (\text{depth}_T(k_i) + 1) \times p_i + \sum_{i=0}^{n} (\text{depth}_T(d_i) + 1) \times q_i = 2.75$$

		$\binom{k_2}{k_2}$		- 1			node	depth	probability	contribution
	\overline{h}			- 1			k_1	1	0.15	0.30
($\overset{\kappa_1}{\sim}$		(K5)	- 1			k_2	0	0.10	0.10
							k_3	3	0.05	0.2
$\begin{pmatrix} d_0 \end{pmatrix}$	$\begin{pmatrix} d_1 \end{pmatrix}$	$\begin{pmatrix} k_4 \end{pmatrix}$		$\begin{pmatrix} d_5 \end{pmatrix}$			k_4	2	0.10	0.3
							k_5	1	0.20	0.4
	k_3 d_4						d_{0}	2	0.05	0.15
							d_1	2	0.10	0.30
	d_2	d_2		- 1			d_2	4	0.05	0.25
		(13)		_			d_3	4	0.05	0.25
i	0	1	2	3	4	5	d_4	3	0.05	0.20
p_i		0.15	0.10	0.05	0.10	0.20	d_5	2	0.10	0.3
q_i	0.05	0.10	0.05	0.05	0.05	0.10	Total			2.75

Optimal Binary Search Trees....

- From the two examples, we have several observations:
 - An optimal binary search tree is not necessarily a tree whose overall height is smallest
 - We DONOT necessarily construct an optimal binary search tree by always putting the key with the greatest probability at the root
 - The lowest expected cost of any binary search tree with k_5 at the root is 2.85

DP for Optimal BSTs.

- Consider any subtree of a binary search tree
 - It must contain keys in a contiguous range k_i, \dots, k_j , where $1 \le i \le j \le n$, and dummy keys d_{i-1}, \dots, d_j
 - Suppose that if k_r is the root of this subtree, the subtree is optimal
 - The left subtree contains k_i , ..., k_{r-1} and d_{i-1} , ..., d_{r-1}
 - The right subtree contains k_{r+1}, \ldots, k_j and d_r, \ldots, d_j

DP for Optimal BSTs..

- There is one detail worth noting about "empty" subtrees
 - Suppose that in a subtree with keys k_i, \dots, k_j , we select k_i as the root

The left subtree of k_i has no actual keys (but still has a dummy key d_{i-1})

• Symmetrically, if we select k_j as the root

The right subtree contains no actual keys, but it does contain the dummy key d_j

DP for Optimal BSTs...

- For a subtree with keys $k_i, ..., k_j$, where $1 \le i \le j \le n$, and dummy keys $d_{i-1}, ..., d_j$
 - We denote this sum of probabilities as

$$w(i,j) = \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l$$

- We use e[i, j] to store the expected search cost for subtree k_i, \dots, k_j
- If k_r is the root of an optimal subtree containing keys k_i,\ldots,k_j e[i,j]=w(i,j)+e[i,r-1]+e[r+1,j]
- Thus the final recursive formulation is

$$e[i,j] = \begin{cases} q_{i-1}, & \text{if } j = i-1\\ \min_{i \le r \le j} \{w(i,j) + e[i,r-1] + e[r+1,j]\}, \text{if } i \le j \end{cases}$$

$$E[\text{search cost in } T] = \sum_{i=1}^{n} (\text{depth}_{T}(k_{i}) + 1) \times p_{i} + \sum_{i=0}^{n} (\text{depth}_{T}(d_{i}) + 1) \times q_{i} \\ = 1 + \sum_{i=1}^{n} \text{depth}_{T}(k_{i}) \times p_{i} + \sum_{i=0}^{n} \text{depth}_{T}(d_{i}) \times q_{i} \end{cases}$$

DP for Optimal BSTs....

- We have three tables for efficiency
 - e[1..n + 1, 0..n] is used to store the expected cost
 - *root*[1..*n*, 1..*n*] is used to store the root of each subtree

```
- w[1..n + 1, 0..n] is used to store the accumulated probability
               OPTIMAL-BST(p, q, n)
                   let e[1 ... n + 1, 0 ... n], w[1 ... n + 1, 0 ... n],
                1
                            and root[1...n, 1...n] be new tables
                  for i = 1 to n + 1
                2
                3 e[i, i-1] = q_{i-1}
                4 w[i, i-1] = q_{i-1}
                  for l = 1 to n
                5
                        for i = 1 to n - l + 1
                6
                7
                            i = i + l - 1
                8
                            e[i, j] = \infty
                9
                            w[i, j] = w[i, j-1] + p_i + q_i
                            for r = i to j
               10
                                t = e[i, r-1] + e[r+1, j] + w[i, j]
               11
                                if t < e[i, j]
               12
                                    e[i, j] = t
               13
               14
                                    root[i, i] = r
               15
                    return e and root
```

12

DP for Optimal BSTs....

$$e[i,j] = \begin{cases} q_{i-1}, & \text{if } j = i-1 \\ \min_{i \le r \le j} \{w(i,j) + e[i,r-1] + e[r+1,j]\}, \text{if } i \le j \end{cases}$$

OPTIMAL-BST (p,q,n)
1 let $e[1 \dots n+1, 0 \dots n], w[1 \dots n+1, 0 \dots n],$
and $root[1 \dots n, 1 \dots n]$ be new tables
2 **for** $i = 1$ **to** $n + 1$
3 $e[i, i-1] = q_{i-1}$
4 $w[i, i-1] = q_{i-1}$
5 **for** $l = 1$ **to** n
6 **for** $i = 1$ **to** $n - l + 1$
7 $j = i + l - 1$
8 $e[i, j] = \infty$
9 $w[i, j] = w[i, j - 1] + p_j + q_j$
10 **for** $r = i$ **to** j
11 $t = e[i, r - 1] + e[r + 1, j] + w[i, j]$
12 **if** $t < e[i, j]$
13 $e[i, j] = t$
14 $root[i, j] = r$
15 **return** e and $root$

13

Questions?

kychen@mail.ntust.edu.tw