
Optimal Binary Search Trees

Kuan-Yu Chen (陳冠宇)

2019/05/01 @ TR-310-1, NTUST

2

Review
• Given two sequences 𝑋𝑋 and 𝑌𝑌, we say that a sequence 𝑍𝑍 is a

common subsequence of 𝑋𝑋 and 𝑌𝑌 if 𝑍𝑍 is a subsequence of
both 𝑋𝑋 and 𝑌𝑌
– 𝑋𝑋 = 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐵𝐵,𝐷𝐷,𝐴𝐴,𝐵𝐵
– 𝑌𝑌 = {𝐵𝐵,𝐷𝐷,𝐶𝐶,𝐴𝐴,𝐵𝐵,𝐴𝐴}
– 𝑍𝑍 = {𝐵𝐵,𝐶𝐶,𝐴𝐴} is a common subsequence of both 𝑋𝑋 and 𝑌𝑌

– It is worthy to note that 𝐵𝐵,𝐶𝐶,𝐵𝐵,𝐴𝐴 is also a common
subsequence of both 𝑋𝑋 and 𝑌𝑌

– Since 𝑋𝑋 and 𝑌𝑌 have no common subsequence of length 5 or
greater, thus 𝐵𝐵,𝐶𝐶,𝐵𝐵,𝐴𝐴 is an longest-common-subsequence
of both 𝑋𝑋 and 𝑌𝑌

3

Optimal Binary Search Trees.
• A binary search tree, also known as an ordered binary tree,

is a variant of binary trees in which the nodes are arranged in
an order
– All the nodes in the left sub-tree have a value less than that of

the root node
– All the nodes in the right sub-tree have a value either equal

to or greater than the root node

4

Optimal Binary Search Trees..
• Formally, given a sequence 𝐾𝐾 = {𝑘𝑘1,𝑘𝑘2, … ,𝑘𝑘𝑛𝑛} of 𝑛𝑛 distinct

keys in sorted order
– That is 𝑘𝑘1 < 𝑘𝑘2 < ⋯ < 𝑘𝑘𝑛𝑛
– For each key 𝑘𝑘𝑖𝑖, we have a probability 𝑝𝑝𝑖𝑖 that a search will be
– It should also be mentioned that some searches may be for

values not in 𝐾𝐾
• We assume that there are 𝑛𝑛 + 1 dummy keys, {𝑑𝑑0,𝑑𝑑1, … ,𝑑𝑑𝑛𝑛}
• 𝑑𝑑0 represents all values less than 𝑘𝑘1
• 𝑑𝑑𝑛𝑛 represents all values greater than 𝑘𝑘𝑛𝑛
• 𝑑𝑑𝑖𝑖 represents all values between 𝑘𝑘𝑖𝑖 and 𝑘𝑘𝑖𝑖+1
• For each dummy key 𝑑𝑑𝑖𝑖 , we have a probability
𝑞𝑞𝑖𝑖 that a search will be

– Every search is either successful (finding some key 𝑘𝑘𝑖𝑖) or
unsuccessful (finding some dummy key 𝑑𝑑𝑖𝑖)

�
𝑖𝑖=1

𝑛𝑛
𝑝𝑝𝑖𝑖 + �

𝑖𝑖=0

𝑛𝑛
𝑞𝑞𝑖𝑖 = 1

5

Optimal Binary Search Trees…
• Because we have probabilities of searches for each key and

each dummy key, we can determine the expected cost of a
search in a given binary search tree 𝑇𝑇
– Let’s assume that the actual cost of a search equals the number

of nodes examined
• The depth of the node found by the search in 𝑇𝑇, plus 1

E search cost in 𝑇𝑇 = �
𝑖𝑖=1

𝑛𝑛

depth𝑇𝑇 𝑘𝑘𝑖𝑖 + 1 × 𝑝𝑝𝑖𝑖 + �
𝑖𝑖=0

𝑛𝑛

depth𝑇𝑇 𝑑𝑑𝑖𝑖 + 1 × 𝑞𝑞𝑖𝑖

= 1 + �
𝑖𝑖=1

𝑛𝑛

depth𝑇𝑇 𝑘𝑘𝑖𝑖 × 𝑝𝑝𝑖𝑖 + �
𝑖𝑖=0

𝑛𝑛

depth𝑇𝑇 𝑑𝑑𝑖𝑖 × 𝑞𝑞𝑖𝑖

6

Example – 1
• For a given binary search tree and its search probability table,

we can calculate the expected cost of the tree

E search cost in 𝑇𝑇 = �
𝑖𝑖=1

𝑛𝑛

depth𝑇𝑇 𝑘𝑘𝑖𝑖 + 1 × 𝑝𝑝𝑖𝑖 + �
𝑖𝑖=0

𝑛𝑛

depth𝑇𝑇 𝑑𝑑𝑖𝑖 + 1 × 𝑞𝑞𝑖𝑖 = 2.8

7

Example – 2
• For a given binary search tree and its search probability table,

we can calculate the expected cost of the tree

E search cost in 𝑇𝑇 = �
𝑖𝑖=1

𝑛𝑛

depth𝑇𝑇 𝑘𝑘𝑖𝑖 + 1 × 𝑝𝑝𝑖𝑖 + �
𝑖𝑖=0

𝑛𝑛

depth𝑇𝑇 𝑑𝑑𝑖𝑖 + 1 × 𝑞𝑞𝑖𝑖 = 2.75

1
2

2

3

4
4

0.2
0.3
0.4

0.25
0.25

0.3

2.75

8

Optimal Binary Search Trees….
• From the two examples, we have several observations:

– An optimal binary search tree is not necessarily a tree whose
overall height is smallest

– We DONOT necessarily construct an optimal binary search tree
by always putting the key with the greatest probability at the
root

• The lowest expected cost of any binary search tree with 𝑘𝑘5 at the
root is 2.85

9

DP for Optimal BSTs.
• Consider any subtree of a binary search tree

– It must contain keys in a contiguous range 𝑘𝑘𝑖𝑖 , … , 𝑘𝑘𝑗𝑗 , where 1 ≤
𝑖𝑖 ≤ 𝑗𝑗 ≤ 𝑛𝑛, and dummy keys 𝑑𝑑𝑖𝑖−1, … ,𝑑𝑑𝑗𝑗

– Suppose that if 𝑘𝑘𝑟𝑟 is the root of this subtree, the subtree is
optimal

• The left subtree contains 𝑘𝑘𝑖𝑖 , … , 𝑘𝑘𝑟𝑟−1 and 𝑑𝑑𝑖𝑖−1, … ,𝑑𝑑𝑟𝑟−1
• The right subtree contains 𝑘𝑘𝑟𝑟+1, … , 𝑘𝑘𝑗𝑗 and 𝑑𝑑𝑟𝑟 , … ,𝑑𝑑𝑗𝑗

10

DP for Optimal BSTs..
– There is one detail worth noting about “empty” subtrees

• Suppose that in a subtree with keys 𝑘𝑘𝑖𝑖 , … , 𝑘𝑘𝑗𝑗, we select 𝑘𝑘𝑖𝑖 as the
root

The left subtree of 𝑘𝑘𝑖𝑖 has no actual keys (but still has a dummy
key 𝑑𝑑𝑖𝑖−1)

• Symmetrically, if we select 𝑘𝑘𝑗𝑗as the root
The right subtree contains no actual keys, but it does contain the

dummy key 𝑑𝑑𝑗𝑗

𝑑𝑑2

11

DP for Optimal BSTs…
• For a subtree with keys 𝑘𝑘𝑖𝑖 , … ,𝑘𝑘𝑗𝑗 , where 1 ≤ 𝑖𝑖 ≤ 𝑗𝑗 ≤ 𝑛𝑛, and

dummy keys 𝑑𝑑𝑖𝑖−1, … ,𝑑𝑑𝑗𝑗
– We denote this sum of probabilities as

– We use 𝑒𝑒[𝑖𝑖, 𝑗𝑗] to store the expected search cost for subtree
𝑘𝑘𝑖𝑖 , … , 𝑘𝑘𝑗𝑗

– If 𝑘𝑘𝑟𝑟 is the root of an optimal subtree containing keys 𝑘𝑘𝑖𝑖 , … , 𝑘𝑘𝑗𝑗

– Thus the final recursive formulation is

𝑤𝑤 𝑖𝑖, 𝑗𝑗 = �
𝑙𝑙=𝑖𝑖

𝑗𝑗

𝑝𝑝𝑙𝑙 + �
𝑙𝑙=𝑖𝑖−1

𝑗𝑗

𝑞𝑞𝑙𝑙

𝑒𝑒 𝑖𝑖, 𝑗𝑗 = 𝑤𝑤 𝑖𝑖, 𝑗𝑗 + 𝑒𝑒 𝑖𝑖, 𝑟𝑟 − 1 + 𝑒𝑒 𝑟𝑟 + 1, 𝑗𝑗

𝑒𝑒 𝑖𝑖, 𝑗𝑗 = �
𝑞𝑞𝑖𝑖−1, 𝑖𝑖𝑖𝑖 𝑗𝑗 = 𝑖𝑖 − 1
min
𝑖𝑖≤𝑟𝑟≤𝑗𝑗

{𝑤𝑤 𝑖𝑖, 𝑗𝑗 + 𝑒𝑒 𝑖𝑖, 𝑟𝑟 − 1 + 𝑒𝑒 𝑟𝑟 + 1, 𝑗𝑗 } , 𝑖𝑖𝑖𝑖 𝑖𝑖 ≤ 𝑗𝑗

E search cost in 𝑇𝑇 = �
𝑖𝑖=1

𝑛𝑛

depth𝑇𝑇 𝑘𝑘𝑖𝑖 + 1 × 𝑝𝑝𝑖𝑖 + �
𝑖𝑖=0

𝑛𝑛

depth𝑇𝑇 𝑑𝑑𝑖𝑖 + 1 × 𝑞𝑞𝑖𝑖

= 1 + �
𝑖𝑖=1

𝑛𝑛

depth𝑇𝑇 𝑘𝑘𝑖𝑖 × 𝑝𝑝𝑖𝑖 + �
𝑖𝑖=0

𝑛𝑛

depth𝑇𝑇 𝑑𝑑𝑖𝑖 × 𝑞𝑞𝑖𝑖

12

DP for Optimal BSTs….
• We have three tables for efficiency

– 𝑒𝑒[1. .𝑛𝑛 + 1, 0. .𝑛𝑛] is used to store the expected cost
– 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[1. .𝑛𝑛, 1. .𝑛𝑛] is used to store the root of each subtree
– 𝑤𝑤[1. .𝑛𝑛 + 1, 0. .𝑛𝑛] is used to store the accumulated probability

13

DP for Optimal BSTs…..

𝑒𝑒 𝑖𝑖, 𝑗𝑗 = �
𝑞𝑞𝑖𝑖−1, 𝑖𝑖𝑖𝑖 𝑗𝑗 = 𝑖𝑖 − 1
min
𝑖𝑖≤𝑟𝑟≤𝑗𝑗

{𝑤𝑤 𝑖𝑖, 𝑗𝑗 + 𝑒𝑒 𝑖𝑖, 𝑟𝑟 − 1 + 𝑒𝑒 𝑟𝑟 + 1, 𝑗𝑗 } , 𝑖𝑖𝑖𝑖 𝑖𝑖 ≤ 𝑗𝑗

14

Questions?

kychen@mail.ntust.edu.tw

	Optimal Binary Search Trees
	Review
	Optimal Binary Search Trees.
	Optimal Binary Search Trees..
	Optimal Binary Search Trees…
	Example – 1
	Example – 2
	Optimal Binary Search Trees….
	DP for Optimal BSTs.
	DP for Optimal BSTs..
	DP for Optimal BSTs…
	DP for Optimal BSTs….
	DP for Optimal BSTs…..
	Questions?

