CS3048701: Deep Learning for Natural Language Processing

Lecture: Thursday, 8:10~10:00

Discussion: Wednesday, 16:30~17:20

 

Instructor: ³¯«a¦t

Teaching Assistants: ù¤W³ù, ÃCÐk®p, ¦¶¿[°a, §d¿AøÊ, §d¬F¨|

 

Date Syllabus Homework
3/1 Course Overview
3/7 HW1-1: Introduction to Python & Data
3/8 Introduction to NLP & Deep Learning
3/14 HW1-2: Introduction to TensorFlow & Data
3/15 Backpropagation
3/21 HW1-3: Backpropagation
3/22 Classic Representations & Language Modeling
3/28 HW2: Introduction to Keras & Data
3/29 Neural Language Modeling & Word Embeddings
4/4 Break
4/5 Break
4/11 HW3: Word Embeddings & Recurrent Neural Networks & Data
4/12 Topic Models & Recurrent Neural Networks
4/18 Break
4/19 Break
4/25 HW4: Convolutional Neural Networks & Data
4/26 Convolutional Neural Networks
5/2 Discussion on Homework 4 & HW5 Preparation
5/3 Paragraph Embeddings & Attention
5/9 Break & Submit Your Member List!
5/10 Advanced Structures
5/16 HW5: Generative Adversarial Network & Data
5/17 Cycle GAN & Conditional GAN Submit Your Research Topic
5/23 IRGAN
5/24 Speech Recognition with Deep Learning Methods (Mr. Ming-Han Yang, Delta Electronics, Inc.)
5/30 Discussion on Homework 5
5/31 Machine Comprehension with Deep Learning (Mr. Wen-Chin Huang, NTU & Academia Sinica)
6/6 Break for Your Final Project
6/7 Break for Your Final Project
6/13 Break for Your Final Project
6/14 7. ³¯o®õ ªLo§D ¤ýoµ¾¡G Dank Learning: Generating Memes Using Deep Neural Networks
29. ³¯o§» ªòoÀ¯¡G An Extended Sentiment Dictionary Approach with TF-IDF to Enhance Sentiment Analysis Taking the Dcard Job forum as an example
25. ¥]o§t »¯o¥à¡G Very Deep Convolution Networks for Large-Scale Image Recognition
30. ´¿oºÓ¡G Deep Music Genre
10. ¤Bo¦w §do°a §õo®¦¡@
17. ±io»¨ ´öo¶W ªLo­õ¡G Dimensional Sentiment Analysis Using a Regional CNN-LSTM Model
11. ±ço»í ¿½o¤è¡G Explaining and Harnessing Adversarial Examples¡@
5. §õo²» ±io¦ö ¾Ho¦t¡G Deep Learning for Event-Driven Stock Prediction
6/20 1. §fo¿Î ©Po»¨ ®}o¨°¡G Recognition of Pornographic Web Pages by Classifying Texts and Images
3. ¼ïo¸Û ½²oÀM ªôo­Û¡G Visual Attribute Transfer through Deep Image Analogy
2. ®ÉoËÕ §do¾ì ­Ùo¤t¡G SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
8. ¾GoÁ¾ ³\oÁ¾ ªôo¿Ä¡G LSTM-based deep learning models for non-factoid answer selection
6/21 20. ¸­o»¨ ¦¿oºû¡G MobileNetV2: Inverted Residuals and Linear Bottlenecks
27. ªôo­Û ½²oÀM ¼ïo¸Û¡G Visual Attribute Transfer Through Deep Image Analogy
9. ±io¯E ³¯oÊo ¬Io¥õ¡G Using Neural Networks to Predict Emoji Usage from Twitter Data
19. ¸­o«Å §do®ß¡G Poker-CNN a pattern learning strategy for making draws and bets in poker games using convolutional networks
13. ªôo´¼ ³¯oºÍ¡G Playing Atari with Deep Reinforcement Learning
4. ªLo´@ ±io¶® §foµÓ¡G Sequence to Sequence Weather Forecasting with Long Short-Term Memory Recurrent Neural Networks
23. ¨Ho¤@ ½²o¼w¡G Car Plate Recognition Based on CNN Using Embedded System with GPU
28. ®}o¶v¡G Stacked Hourglass Networks for Human Pose Estimation
6/27 18. ±ioªF ¸âo§Ê¡G Building Energy Consumption Prediction: An Extreme Deep Learning Approach
6. ³¢o©ú ¶Ào´@ §ºo¸R¡G A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks
22. ¶Ào¤¯ ¿co¨ç §do§»¡G Generating Chinese Classical Poems with RNN Encoder-Decoder
12. ³¯oµ¾ ¼Bo±j¡G Comment Abuse Classification with Deep Learning¡@
6/28 15. §Eo¯E §foèû §doºÂ¡G Sentiment Analysis on Movie Reviews using Recursive and Recurrent Neural Network Architectures
24. ªLo¿A ³¢oèx ·¨o²a¡G Extractive Summarization using Deep Learning
21. ³¯o¿o ±io³Ç¡G Single-Image Crowd Counting via Multi-Column Convolutional Neural Network
14. ¶ÀoËR §õo¦¨¡G Very Deep Convolutional Networks for Text Classification
16. ´¿oµ¾ ¤ýo´P¡G Learning a Wavelet-like Auto-Encoder to Accelerate Deep Neural Networks
26. §õoºü §doÀM ¹ùoµ{¡G Mask R-CNN for Object Detection and Segmentation