Chapter 11: Boolean Algebra and Logic Circuits

謝仁偉 助理教授 jenwei@mail.ntust.edu.tw 國立台灣科技大學 資訊工程系 2008 Spring

Outline

- Boolean Algebra and Switching Circuits
- Laws and Rules of Boolean Algebra
- De Morgan's Laws
- Karnaugh Maps
- Logic Circuits
- Universal Logic Gates

Boolean Algebra and Switching Circuits (1/2)

- A two-state device is one whose basic elements can only have one of two conditions.
- In Boolean algebra, if *A* represents one state, then \overline{A} , called 'not-*A*', represents the second state.
- The or-function: A + B
 - Defined as 'A, or B, or both A and B'
 - The equivalent electrical circuit is two switches

Boolean Algebra and Switching Circuits (2/2)

- The and-function: $A \bullet B$
 - Defined as 'both A and B'
 - The equivalent electrical circuit is two switches connected in series.

- The not-function: A
 - Defined as 'the opposite to A'

Α	$Z = \overline{A}$
0	1
1	0

0

0

0

1

4

Problems

 Problem 1. Derive the Boolean expression and construct a truth table for the switching circuit shown below.

					_	_
F7						
	_	Α.	(K)	. А.	⊥ K `	1. K I
	_	11.	(D)		ΤΟ,	
-			•			_

А	В	B•A	B	B•A+B	Ā	$Z = \overline{A} \bullet (B \bullet A + \overline{B}) \bullet \overline{B}$
0	0	0	1	1	1	1
0	1	0	0	0	1	0
1	0	0	1	1	0	0
1	1	1	0	1	0	0

5

Problems

 Problem 4. Derive the Boolean expression and construct the switching circuit for the truth table given below.

 $[Z = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C]$

6

Exercise 46

 Exercise 4. Determine the Boolean expressions and construct truth table for the switching circuit.

Exercise 46

• Exercise 10. Derive the Boolean expression and construct the switching circuit for the truth table stated.

Simplifying	Boolean Expressions	Laws and Rules of Boolean Algebra (1/2)			
 If the Boolean ex the number of sw 	pression can be simplified, then <i>i</i> itches or logic elements can be	Commutative Laws	$A + B = B + A$ $A \bullet B = B \bullet A$		
reduced resultingThree principal w	g in a saving in cost. vays of simplifying Boolean	Associative Laws			
expression are: – By using the laws – By applying de M	s and rules of Boolean algebra lorgan's laws	• Distributive Laws $A \cdot (B + C) = A \cdot B + A \cdot C$ $A + (B \cdot C) = (A + B) \cdot (A + C)$			
– By using Karnau	gh maps	Sum Rules	A + 0 = A A + 1 = 1 A + A = A $A + \overline{A} = 1$		
	9			10	
Laws and Rules	of Boolean Algebra (2/2)	F	Problems		
Product RulesAbsorption Rules	$A \cdot 0 = 0$ $A \cdot 1 = A$ $A \cdot A = A$ $A \cdot \overline{A} = 0$ $A + A \cdot B = A$ $A \cdot (A + B) = A$ $A + \overline{A} \cdot B = A + B$	 Problem 5. Simple P • Q + P • Q + P [P + Q] Problem 6. Simple [P + Q] Problem 7. Simple F • G • H + F • G • 	lify the Boolean expression ● Q lify (P + P ● Q) ● (Q + Q ● P) lify ● H + F ● G ● H		
	11	[G • (F + H)]		12	

Problems

- Problem 8. Simplify
 F G H + F G H + F G H + F G H
 [H]
- **Problem 9.** Simplify $A \bullet \overline{C} + \overline{A} \bullet (B + C) + A \bullet B \bullet (C + \overline{B})$ $[A \cdot \overline{C} + B + \overline{A} \cdot C]$
- **Problem 10.** Simplify $P \bullet \overline{Q} \bullet R + P \bullet Q \bullet (\overline{P} + R) + Q \bullet R \bullet (\overline{Q} + P)$ $[P \cdot R]$

De Morgan's Laws & Problems

- De Morgan's laws may be used to simplify notfunctions having two or more elements.
- The laws state that:

 $\overline{A+B} = \overline{A} \cdot \overline{B}$ and $\overline{A \cdot B} = \overline{A} + \overline{B}$

- **Problem 11.** Verify that $\overline{A+B} = \overline{A} \cdot \overline{B}$
- **Problem 12.** Simplify the Boolean expression $(\overline{A} \cdot B) + (\overline{A} + B)$ by using de Morgan's laws and the rules of Boolean algebra.

 $[A + \overline{B}]$

Exercise 47

- Use the laws and rules of Boolean algebra to simplify the following expressions:
- Exercise 6. $\overline{F} \cdot \overline{G} \cdot H + \overline{F} \cdot G \cdot H + F \cdot \overline{G} \cdot H$ [$H \cdot (\overline{F} + \overline{G})$]
- Exercise 12. $\overline{R} \cdot (\overline{P} \cdot \overline{Q} + P \cdot Q + P \cdot \overline{Q}) + P \cdot (Q \cdot R + \overline{Q} \cdot R)$ $[P + \overline{Q} \cdot \overline{R}]$

14

Problems & Exercise 48

• **Problem 13.** Simplify the Boolean expression $(\overline{A \cdot \overline{B} + C}) \cdot (\overline{A} + \overline{B \cdot \overline{C}})$ by using de Morgan's laws and the rules of Boolean algebra.

 $[A \cdot C]$

- Use de Morgan's law and the rules of Boolean algebra to simplify the following expressions.
- Exercise 2. $(A + \overline{B \cdot C}) + (\overline{A \cdot B} + C)$ [$\overline{A} + \overline{B} + C$]
- Exercise 3. $(\overline{\overline{A}} \cdot \overline{B} + \overline{B} \cdot \overline{C}) \cdot \overline{A} \cdot \overline{\overline{B}}$ $[\overline{A} \cdot \overline{B} + A \cdot B \cdot C]$

15

Two-Variable Karnaugh Maps

Inputs		Output	Boolean
Α	В	Z	expression
0	0	0	•B
0	1	0	•B
1	0	1	A•B
1	1	0	A • B

A truth table for a twovariable expression

Three-Variable Karnaugh Maps

A truth table for the three-variable expression:

 $Z = \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot C + A \cdot B \cdot \overline{C}$

I	nput	s	Output	Boolean	
А	В	С	Z	expression	
0	0	0	0	Ā•B•C	
0	0	1	1	Ā•B•C	
0	1	0	0	Ā•B•C	
0	1	1	1	Ā•B•C	
1	0	0	0	A•B•C	
1	0	1	0	A • B • C	
1	1	0	1	A•B•C	
1	1	1	0	A•B•C	

∧ A•	B 00	01	11	10
c	(Ā • B)	(•B)	(A • B)	(A • B)
0 (C)	Ā·B·C	Ā∙B∙Ē	A•B•Ē	A∙B∙C
1 (C)	Ā·B·C	Ā•B•C	А•В•С	A•B•C
\ A•	В		l	
c	00	01	11	10
0	0 0		1	0

0

0

18

Four-Variable Karnaugh Maps

						1
	Inp	uts		Output	Boolean	$Z = \overline{A} \cdot \overline{B} \cdot C \cdot \overline{D} + \overline{A} \cdot B \cdot C \cdot \overline{D}$
A	В	С	D	Z	expression	
0	0	0	0	0	Ā•B•C•D	$+A \cdot B \cdot C \cdot D + A \cdot B \cdot C \cdot L$
0	0	0	1	0	A • B • C • D	A-B 00 01 11 10
0	0	1	0	1	Ā•B•C•D	$C \cdot \overline{D}$ $(\overline{A} \cdot \overline{B})$ $(\overline{A} \cdot B)$ $(A \cdot B)$ $(A \cdot B)$
0	0	1	1	0	<u>A</u> • <u>B</u> • <u>C</u> • <u>D</u>	
0	1	0	0	0	<u>A</u> • B • <u>C</u> • <u>D</u>	01 A·B·C·D A·B·C·D A·B·C·D A·B·C·D
0	1	0	1	0	A • B • C • D	
0	1	1	0	1	A • B • C • D	(C·D) A·B·C·D A·B·C·D A·B·C·D A·B·C·I
0	1	1	1	0	Ā•B•C•D	10 (C·D) A·B·C·D A·B·C·D A·B·C·D A·B·C·D
1	0	0	0	0	A • B • C • D	
1	0	0	1	0	A • B • C • D	C. 0.0 0.1 1.1 1.0
1	0	1	0	1	A • B • C • D	0.00000
1	0	1	1	0	A • B • C • D	
1	1	0	0	0	A • B • C • D	
1	1	0	1	0	A • B • C • D	
1	1	1	0	1	A · B · C · D	
1	1	1	1	0	A•B•C•D	19

Simplifying a Boolean Expression Using a Karnaugh Map (1/2)

- a) Draw a 4, 8, or 16-cell matrix, depending on whether there are 2, 3, or 4 variables.
- b) Mark in the Boolean expression by putting 1's in the appropriate cells.
- c) From couples of 8, 4, or 2 cells having common edges, forming the largest groups of cells possible.
 - Note that a cell containing a 1 may be used more than once when forming a couple.
 - Also note that each cell containing a 1 must be used at least once.

Simplifying a Boolean Expression Using a Karnaugh Map (2/2)

d) The Boolean expression for the couple is given by the variables which are common to all cells in the couple.

Problems

- **Problem 14.** Use the Karnaugh map techniques to simplify the expression $\overline{P} \cdot \overline{Q} + \overline{P} \cdot Q$ [\overline{P}]
- **Problem 15.** Simplify the expression $\overline{X} \cdot Y \cdot \overline{Z} + \overline{X} \cdot \overline{Y} \cdot Z + X \cdot Y \cdot \overline{Z} + X \cdot \overline{Y} \cdot Z$ by using Karnaugh map techniques. $[Y \cdot \overline{Z} + \overline{Y} \cdot Z]$
- Problem 17. Simplify (P + Q · R) + (P · Q + R) using a Karnaugh map technique.
 [P + Q · R]

Problems

• **Problem 19.** Simplify the expression $\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot C \cdot \overline{D} + A \cdot \overline{B} \cdot C \cdot D + A \cdot B \cdot C \cdot D$ by using Karnaugh map techniques. $[\overline{B} \cdot \overline{D} + A \cdot B \cdot C \cdot D]$

Exercise 49

- Use Karnaugh map techniques to simplify the expression given.
- Exercise 3. $(\overline{P} \cdot \overline{Q}) \cdot (\overline{P} \cdot Q)$ $[\overline{P} \cdot \overline{Q}]$
- Exercise 4. $A \cdot \overline{C} + \overline{A} \cdot (B + C) + A \cdot B \cdot (C + \overline{B})$ [$A \cdot \overline{C} + B + \overline{A} \cdot C$]
- Exercise 8. $\overline{A} \cdot \overline{B} \cdot C \cdot D + \overline{A} \cdot \overline{B} \cdot C \cdot \overline{D} + A \cdot \overline{B} \cdot C \cdot \overline{D}$ [$\overline{B} \cdot C \cdot (\overline{A} + \overline{D})$]

21

Exercise 49

Use Karnaugh map techniques to simplify the expression given.

- Exercise 10. $\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D + A \cdot B \cdot \overline{C} \cdot \overline{D} + A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$ $+A \cdot B \cdot C \cdot \overline{D} + A \cdot \overline{B} \cdot C \cdot D$ $[\mathbf{A} \cdot \overline{\mathbf{D}} + \overline{\mathbf{A}} \cdot \overline{\mathbf{B}} \cdot \overline{\mathbf{C}} \cdot \mathbf{D}]$
- Exercise 11. $A \cdot B \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot B \cdot C \cdot D$ $+\overline{A}\cdot\overline{B}\cdot C\cdot D + A\cdot\overline{B}\cdot\overline{C}\cdot\overline{D} + \overline{A}\cdot\overline{B}\cdot C\cdot\overline{D} + \overline{A}\cdot B\cdot C\cdot\overline{D}$ $[\overline{A} \cdot C + A \cdot \overline{C} \cdot \overline{D} + \overline{B} \cdot \overline{C} \cdot \overline{D}]$

25

Logic Circuits (1/3)

• The and-gate:

BF	RITISH	ł	
١N	NPU 1	S	OUTPUT
А	В	С	$Z = A \bullet B \bullet C$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

• The or-gate:

Logic Circuits (2/3)

• The invert-gate or not-gate: • The nand-gate:

AMERICAN

INPUTS	OUTPUT	
А	$Z = \overline{A}$	
0	1	
1	0	

A B C		& RITE	∠ A B C SH A	MERICAN
IN	IPU ⁻	ΓS	AsPaC	OUTPUT
Α	В	С	A•B•C	$Z = A \bullet B \bullet C$
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1

0

0

1

1

1

0

0

1 0

1 1

1

1

Logic Circuits (3/3)

• The nor-gate:

١N	IPU	ГS		OUTPUT
А	В	С	A+B+C	Z = A + B + C
0	0	0	0	1
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

Combinational Logic Networks (1/2)

• **Problem 22.** Device a logic circuit to meet the requirements of the output given below using as few gates as possible.

$$[Z = A \cdot (B + C)]$$

Inputs			Output	
А	В	С	Z	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

29

31

Combinational Logic Networks (2/2)

• **Problem 23.** Simplify the expression: $Z = \overline{P} \cdot \overline{Q} \cdot \overline{R} \cdot \overline{S} + \overline{P} \cdot \overline{Q} \cdot \overline{R} \cdot S + \overline{P} \cdot Q \cdot \overline{R} \cdot \overline{S} + \overline{P} \cdot Q \cdot \overline{R} \cdot S + P \cdot Q \cdot \overline{R} \cdot \overline{S}$ $+ P \cdot \overline{Q} \cdot \overline{R} \cdot \overline{S}$

and devise a logic circuit to give this output.

 $[Z = \overline{\mathsf{R}} \cdot (\overline{\mathsf{P}} + \overline{\mathsf{Q}} \cdot \overline{\mathsf{S}})]$

30

Exercise 50

- Exercise 2. Devise a logic system to meet the requirement of the Boolean expression:
 - $Z = A \cdot B + B \cdot C$
- Exercise 5. Simplify the expression given in the truth table and devise a logic circuit to meet the requirements stated.

 $[Z = A \cdot B + C]$

А	В	С	Z	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	
				-

Exercise 50

Simplify the Boolean expressions given and devise a logic circuit to give the requirement of the simplified expression.

- Exercise 9. $\overline{P} \cdot \overline{Q} \cdot \overline{R} + P \cdot Q \cdot \overline{R} + P \cdot \overline{Q} \cdot \overline{R}$ [$\overline{R} \cdot (P + \overline{Q})$]
- Exercise 11. $\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot C \cdot \overline{D}$ + $\overline{A} \cdot B \cdot C \cdot \overline{D} + A \cdot \overline{B} \cdot C \cdot \overline{D}$ [$\overline{D} \cdot (\overline{A} \cdot C + \overline{B})$]

Exercise 50	Universal Logic Gates & Problem
• Exercise 12. $\overline{(\overline{P} \cdot Q \cdot R)} \cdot \overline{(P + Q \cdot R)}$ $[\overline{P} \cdot (\overline{Q} + \overline{R})]$	 The function of any of the five logic gates in common use can be obtained by using either nand-gates or nor-gates. When used in this manner, the gate selected is called a universal gate
	 Problem 24. Show how invert, and, or, and nor-functions can be produced using nand-gates only.
	 Problem 25. Show how invert, or, and, and nand-functions can be produced by using nor- gates only.
33	34

Problems

• **Problem 26.** Design a logic circuit, using nandgates having not more than three inputs, to meet the requirements of the Boolean expression

 $Z = \overline{A} + \overline{B} + C + \overline{D}$

[hint: It is usual in logic circuit design to start the design at the output.]

• **Problem 27.** Use nor-gates only to design a logic circuit to meet the requirements of the expression: $Z = \overline{D} \cdot (\overline{A} + B + \overline{C})$

Problems

- Problem 28. An alarm indicator in a grinding mill complex should be activated if (a) the power supply to all mills is off and (b) the hopper feeding the mills is less than 10% full, and (c) if one of the three grinding mills is not in action. Device a logic system to meet these requirements.
 - [A: the power supply on to all the mills
 - B: the hopper feeding the mills being more than 10% full
 - C, D, and E: the three mills being in action respectively]

Exercise 51

- **Exercise 1.** Use nand-gates only to devise the logic system: *Z* = *A* + *B C*
- In Problem 4 to 6, use nor-gates only to devise the logic systems stated.
- Exercise 4. $Z = (\overline{A} + B) \cdot (\overline{C} + D)$
- Exercise 5. $Z = A \cdot \overline{B} + B \cdot \overline{C} + C \cdot \overline{D}$
- Exercise 6. $Z = \overline{P} \cdot Q + P \cdot (Q + R)$

Exercise 51

• Exercise 9. A water tank feeds three separate processes. When any two of the processes are in operation at the same time, a signal is required to start a pump to maintain the head of water in the tank. Devise a logic circuit using nor-gates only to give the required signal.

 $[Z = A \cdot (B + C) + B \cdot C$ or Z = A \cdot B + A \cdot C + B \cdot C]

38

Homework Assignment 3

Deadline: 21 April 2008 (Firm Real-Time)

Midterm Announcement 21 April 2008