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Statements (1/5)

• Statements (or propositions): declarative 
sentences that are either true or false but not 
both.

• Examples:
– p: Combinatorics is a required course for sophomores.
– q: Margaret Mitchell wrote Gone with the Wind.
– r: 2 + 3 = 5.

• Non-statements: (do not have truth values)
– “What a beautiful evening!” (exclamation)
– “Get up and do your exercises.” (command)
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Statements (2/5)

• Primitive statements: there is really no way to 
break them down into anything simpler.

• New statements can be obtained from existing 
ones in two ways.

1. Negation: We do not consider the negation of a 
primitive statement to be a primitive statement.
¬ p :  Combinatorics is not a required course 
for sophomores.
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Statements (3/5)

2. Compound statement, using the following 
logical connectives:
a) Conjunction ∧

p ∧ q: “Combinatorics is a required course for 
sophomores, and Margaret Mitchell wrote Gone with 
the Wind.”

b) Disjunction ∨
p ∨ q (inclusive): true if one or the other of p, q is true 
or if both of the statements p, q are true.

(exclusive): true if one or the other of p, q is 
true but not both of the statements p, q are true.
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Statements (4/5)

c) Implication →
p → q: “If combinatorics is a required course for 
sophomores, then Margaret Mitchell wrote Gone 
with the Wind.”
Alternatively, we can say
1. “If p, then q.”
2. “p is sufficient for q.”
3. “p is a sufficient condition for q.”
4. “q is necessary for p.”
5. “q is a necessary condition for p.”
6. “q only if p.”
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Statements (5/5)
• The statement p is called the hypothesis of the 

implication; q is called the conclusion.
d) Biconditional ↔

p ↔ q: “Combinatorics is a required course for 
sophomores, if and only if Margaret Mitchell wrote 
Gone with the Wind.”
• “p if and only if q” or “p is necessary and sufficient 

for q.”
• Abbreviate “p if and only if q” as “p iff q.”

• Note: A sentence such as “The number x is an 
integer.” is not a statement because its truth 
value cannot be determined until a numerical 
value is assigned for x.
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Truth Table

“0” for false and “1” for true
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Example of implication (1/2)

• Example 2.2: It is almost the week before 
Christmas and Penny will be attending several 
parties that week. Ever conscious of her weight, 
she plans not to weigh herself until the day after 
Christmas. Considering what those parties may 
do to her waistline by then, she makes the 
following resolution for the December 26 
outcome: “If I weigh more than 120 pounds, then 
I shall enroll in an exercise class.”

10

Example of implication (2/2)

• Example 2.2 (cont.):
Let p and q denote the (primitive) statements

p: I weigh more than 120 pounds.
q: I shall enroll in an exercise class.

Then Penny’s statement (implication) is given by 
p → q.

We shall consider the truth values of this 
particular example of p → q
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Example of Compound Statement (1/2)

• Example 2.4: Let us examine the truth table for 
the compound statement “Margaret Mitchell 
wrote Gone with the Wind, and if 2 + 3 ≠ 5, then 
combinatorics is a required course for 
sophomores.”
– p: Combinatorics is a required course for sophomores.
– q: Margaret Mitchell wrote “Gone with the Wind”.
– r: 2 + 3 = 5.

q ∧ (¬r → p)

12

Example of Compound Statement (2/2)

• Example 2.4 (cont.):
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Tautology and Contradiction

• Definition 2.1: A compound statement is called 
a tautology if it is true for all truth value 
assignments for its component statement. If a 
compound statement is false for all such 
assignments, then it is called a contradiction.

• EXERCISES 2.1: 4, 6

Use the symbol 
T0 to denote 

any tautology.

Use the symbol 
F0 to denote any 

contradiction.
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Logical Equivalence

• Definition 2.2: Two statements s1, s2 are said to 
be logically equivalent, and we write s1 ⇔ s2, 
when the statement s1 is true (respectively, false) 
if and only if the statement s2 is true (respectively, 
false).

∴ ¬p ∨ q ⇔ p → q

We can eliminate the 
connective → from 

compound statements.
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Eliminate Connectives from Compound 
Statements

(p ↔ q) ⇔ (¬p ∨ q) ∧ (¬q ∨ p)
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Important Properties (1/2)

• Example 2.8: (DeMorgan’s Laws)

∴ ¬(p ∧ q) ⇔ ¬p ∨ ¬q
¬(p ∨ q) ⇔ ¬p ∧ ¬q
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Important Properties (2/2)

• Example 2.9: (Distributive Law)
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The Laws of Logic (1/2)

• For any primitive statements p, q, r, any 
tautology T0, and any contradiction F0,

1) ¬¬p ⇔ p Law of Double Negation
2) ¬(p ∨ q) ⇔ ¬p ∧ ¬q DeMorgan’s Laws

¬(p ∧ q) ⇔ ¬p ∨ ¬q
3) p ∨ q ⇔ q ∨ p Commutative Laws

p ∧ q ⇔ q ∧ p
4) p ∨ (q ∨ r) ⇔ (p ∨ q) ∨ r Associative Laws

p ∧ (q ∧ r) ⇔ (p ∧ q) ∧ r
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The Laws of Logic (2/2)

5) p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r) Distributive Laws
p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r)

6) p ∨ p ⇔ p Idempotent Laws
p ∧ p ⇔ p

7) p ∨ F0 ⇔ p Identity Laws
p ∧ T0 ⇔ p

8) p ∨ ¬p ⇔ T0 Inverse Laws
p ∧ ¬p ⇔ F0

9) p ∨ T0 ⇔ T0 Domination Laws
p ∧ F0 ⇔ F0

10) p ∨ (p ∧ q) ⇔ p Absorption Laws
p ∧ (p ∨ q) ⇔ p
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Dual of Statement (1/3)

• Definition 2.3: Let s be a statement. If s contains 
no logical connectives other than ∧ and ∨, then 
the dual of s, denoted sd, is the statement 
obtained from s by replacing each occurrence of 
∧ and ∨ by ∨ and ∧, respectively, and each 
occurrence of T0 and F0 by F0 and T0, 
respectively.
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Dual of Statement (2/3)

• If p is any primitive statement, then
– pd is the same as p
– (¬p)d is the same as ¬p
– p ∨ ¬p and p ∧ ¬p are duals of each other
– p ∨ T0 and p ∧ F0 are duals of each other
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Dual of Statement (3/3)

• Theorem 2.1 (The Principle of Duality): Let s
and t be statements that contain no logical 
connectives other than ∧ and ∨. If s ⇔ t, then 
sd ⇔ td.

Laws 2 through 10 in our list can be established 
by proving one of the laws in each pair and then 
invoking this principle.
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Substitution Rules

1. Suppose that the compound statement P is a 
tautology. If p is a primitive statement that 
appears in P and we replace each occurrence 
of p by the same statement q, then the resulting 
compound statement P1 is also a tautology.

2. Let P be a compound statement where p is an 
arbitrary statement that appears in P, and let q 
be a statement such that q ⇔ p. Suppose that 
in P we replace one or more occurrences of p
by q. Then this replacement yields the 
compound statement P1. Under these 
circumstances P1 ⇔ P.
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Examples of Substitution Rules (1/3)

• Example 2.10: (Substitution Rule 1)
a) (From DeMorgan’s Laws) P: ¬(p ∨ q) ↔ (¬p ∧ ¬q) is a 

tautology.
P1: ¬[(r ∧ s) ∨ q] ↔ [¬(r ∧ s) ∧ ¬q] is a tautology.
P2: ¬[(r ∧ s) ∨ (t → u)] ↔ [¬(r ∧ s) ∧ (t → u)] is also a 
tautology. 
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Examples of Substitution Rules (2/3)

• Example 2.10 (cont.): (Substitution Rule 1)
b)

∴ [p ∧ (p → q)] → q is a tautology.

(r → s) ∧ [(r → s) → (¬t ∨ u)] → (¬t ∨ u) is also 
a tautology.
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Examples of Substitution Rules (3/3)

• Example 2.11: (Substitution Rule 2) 
P: p → (p ∨ q) is a tautology.
P1: p → (¬¬p ∨ q) is also a tautology.
(Since ¬¬p ⇔ p.)
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Examples (1/6)

• Example 2.12: Negate and simplify the 
compound statement (p ∨ q) → r.
1) (p ∨ q) → r ⇔ ¬(p ∨ q) ∨ r
2) ¬[(p ∨ q) → r] ⇔ ¬[¬(p ∨ q) ∨ r]
3) ¬[¬(p ∨ q) ∨ r] ⇔ ¬¬(p ∨ q) ∧ ¬r
4) ¬¬(p ∨ q) ∧ ¬r ⇔ (p ∨ q) ∧ ¬r

¬[(p ∨ q) → r] ⇔ (p ∨ q) ∧ ¬r
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Examples (2/6)

• Example 2.13: Let p, q denote the primitive 
statements 

p: Joan goes to Lake George. 
q: Mary pays for Joan’s shopping spree.

and consider the implication
p → q: If Joan goes to Lake George, then Mary 
pays for Joan’s shopping spree.
How to write the negation of p → q in a way 
other than simply ¬(p → q)?

30

Examples (3/6)

• Example 2.13 (cont.):
p: Joan goes to Lake George. 
q: Mary pays for Joan’s shopping spree. 

¬(p → q) ⇔ ¬(¬p ∨ q) ⇔ ¬¬p ∧ ¬q ⇔ p ∧ ¬q
¬(p → q): Joan goes to Lake George, but Mary 
does not pay for Joan’s shopping spree. 
Note: The negation of an if-then statement does 
not begin with the word if. It is not another 
implication.

31

Examples (4/6)

• Example 2.15:

– The statement ¬q → ¬p is called the contrapositive of 
the implication p → q.

– The statement q → p is called the converse of p → q.
– The statement ¬p → ¬q is called the inverse of p → q.
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Examples (5/6)

• Example 2.15 (cont.):
Let us consider a specific example where p, q
represent the statements
p: Jeff is concerned about his cholesterol levels.
q: Jeff walks at least 2 miles 3 times a week.
(The implication: p → q). If Jeff is concerned 
about his cholesterol levels, then he will walks at 
least 2 miles 3 times a week.
(The contrapositive: ¬q → ¬p). If Jeff does not 
walk at least 2 miles 3 times a week, then he is 
not concerned about his cholesterol levels.
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Examples (6/6)

• Example 2.15 (cont.):
(The converse: q → p). If Jeff walks at least 2 
miles 3 times a week, then he is concerned 
about his cholesterol levels. 
(The inverse: ¬p → ¬q). If Jeff is not concerned 
about his cholesterol levels, then he will not 
walks at least 2 miles 3 times a week.
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Simplification of Compound Statements (1/2)

• Example 2.16: For primitive statements p, q, is 
there any simpler way to express the compound 
statement (p ∨ q) ∧ ¬(¬p ∧ q) — that is, can we 
find a simpler statement that is logically 
equivalent to the one given?
(p ∨ q) ∧ ¬(¬p ∧ q) Reasons
⇔ (p ∨ q) ∧ (¬¬p ∨ ¬q) DeMorgan’s Law
⇔ (p ∨ q) ∧ (p ∨ ¬q) Law of Double Negation
⇔ p ∨ (q ∧ ¬q) Distributive Law of ∨ over ∧
⇔ p ∨ F0 Inverse Law
⇔ p Identify Law
Consequently, we see that (p ∨ q) ∧ ¬(¬p ∧ q) ⇔ p
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Simplification of Compound Statements (2/2)

• Example 2.17: Consider the compound 
statement ¬[¬[(p ∨ q) ∧ r] ∨ ¬q], where p, q, r are 
primitive statements.

¬[¬[(p ∨ q) ∧ r] ∨ ¬q] Reasons
⇔ ¬¬[(p ∨ q) ∧ r] ∧ ¬¬q] DeMorgan’s Law
⇔ [(p ∨ q) ∧ r] ∧ q Law of Double Negation
⇔ (p ∨ q) ∧ (r ∧ q) Associative Law of ∧
⇔ (p ∨ q) ∧ (q ∧ r) Commutative Law of ∧
⇔ [(p ∨ q) ∧ q] ∧ r Associative Law of ∧
⇔ q ∧ r Absorption Law (as well as the 

Commutative Laws for ∧ and ∨)
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Simplification of Switching Networks (1/4)

• A switching network is made up of wires and 
switches connecting two terminals T1 and T2.
– Open (0): No current flows through it.
– Closed (1): Current does flow through it.

Parallel network, 
p ∨ q

Series network, 
p ∧ q
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Simplification of Switching Networks (2/4)

• Example 2.18:

The switches in a network 
need not act independently 

of each other.

This network is represented by the statement 
(p ∨ q ∨ r) ∧ (p ∨ t ∨ ¬q) ∧ (p ∨ ¬t ∨ r).
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Simplification of Switching Networks (3/4)

• Example 2.18 (cont.):
(p ∨ q ∨ r) ∧ (p ∨ t ∨ ¬q) ∧ (p ∨ ¬t ∨ r) Reasons
⇔ p ∨ [(q ∨ r) ∧ (t ∨ ¬q) ∧ (¬t ∨ r )] Distributive Law of ∨

over ∧
⇔ p ∨ [(q ∨ r) ∧ (¬t ∨ r ) ∧ (t ∨ ¬q)]    Commutative Law of ∧
⇔ p ∨ [((q ∧ ¬t) ∨ r) ∧ (t ∨ ¬q)] Distributive Law of ∨

over ∧
⇔ p ∨ [((q ∧ ¬t) ∨ r) ∧ (¬¬t ∨ ¬q)] Law of Double Negation
⇔ p ∨ [((q ∧ ¬t) ∨ r) ∧ ¬(¬t ∧ q)] DeMorgan’s Law
⇔ p ∨ [¬(¬t ∧ q) ∧ ((¬t ∧ q) ∨ r)] Commutative Law of ∧

(twice)
⇔ p ∨ [(¬(¬t ∧ q) ∧ (¬t ∧ q)) ∨ Distributive Law 

(¬(¬t ∧ q) ∧ r)] of ∧ over ∨
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Simplification of Switching Networks (4/4)

• Example 2.18 (cont.):

• EXERCISES 2.2: 4, 8, 10

⇔ p ∨ [F0 ∨ (¬(¬t ∧ q) ∧ r)] ¬s ∧ s ⇔ F0, for any  statement s
⇔ p ∨ [(¬(¬t ∧ q)) ∧ r] F0 is the identity for ∨
⇔ p ∨ [r ∧ ¬(¬t ∧ q)] Commutative Law of ∧
⇔ p ∨ [r ∧ (t ∨ ¬q)] DeMorgan’s Law and the Law of 

Double Negation
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Valid Argument (1/2)

• Let us consider the implication
(p1 ∧ p2 ∧ p3 ∧ … ∧ pn) → q.

Here n is a positive integer.
• The statements p1, p2, p3, …, pn are called the 

premises of the argument.
• The statement q is the conclusion of the 

argument.
• The argument is called valid if whenever each of 

the premises p1, p2, p3, …, pn is true, then the 
conclusion q is likewise true.
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Valid Argument (2/2)

• If any one of p1, p2, p3, …, pn is false, then the 
hypothesis (p1 ∧ p2 ∧ p3 ∧ … ∧ pn) is false and the 
implication (p1 ∧ p2 ∧ p3 ∧ … ∧ pn) → q is 
automatically true, regardless of the truth value 
of q.
One way to establish the validity of a given 
argument is to show that the statement (p1 ∧ p2 ∧
p3 ∧ … ∧ pn) → q is a tautology.
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Example (1/3)

• Example 2.19: Let p, q, r denote the primitive 
statements given as

p: Roger studies.
q: Roger plays tennis.
r: Roger passes discrete mathematics.

Now let p1, p2, p3 denote the premises
p1: If Roger studies, then he will pass 

discrete mathematics.
p2: If Roger doesn’t play tennis, then he’ll 

study.
p3: Roger failed discrete mathematics.
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Example (2/3)

• Example 2.19 (cont.):
We want to determine whether the argument

(p1 ∧ p2 ∧ p3) → q
is valid.
To do so, we rewrite p1, p2, p3 as

p1: p → r p2: ¬q → p p3: ¬r
and examine the truth table for the implication

[(p → r) ∧ (¬q → p) ∧ ¬r] → q
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Example (3/3)

• Example 2.19 (cont.):

Since the implication is a tautology, we can say that 
(p1 ∧ p2 ∧ p3) → q is a valid argument.
The truth of the conclusion q is deduced or inferred from 
the truth of the premises p1, p2, and p3. 46

Logical Implication

• Definition 2.4: If p, q are arbitrary statements 
such that p → q is a tautology, then we say that p
logically implies q and we write p ⇒ q to denote 
this situation. (We refer to p → q as a logical 
implication.)
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Rule of Inference: Modus Ponens

• Example 2.22 (Modus Ponens or Rule of 
Detachment): In symbolic form this rule is 
expressed by the logical implication

[p ∧ (p → q)] → q
If (1) p is true, and (2) p → q is 

true (or p ⇒ q), then the 
conclusion q must also be true.
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Rule of Inference: Law of the Syllogism (1/2)

• Example 2.23 (Law of the Syllogism): This rule 
is given by the logical implication

[(p → q) ∧ (q → r)] → (p → r),
where p, q, and r are any statements.
In tabular form it is written 
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Rule of Inference: Law of the Syllogism (2/2)

• Example 2.23 (cont.):
We may use it as follows:

1) If the integer 35244 is divisible by 396, 
then the integer 35244 is divisible by 66. p → q

2) If the integer 35244 is divisible by 66,
then the integer 35244 is divisible by 3. q → r

3) Therefore, if the integer 35244 is divisible
by 396, then the integer 35244 is              ∴ p → r
divisible by 3.
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Example (1/3)

• Example 2.24: Consider the following argument.
1) Rita is baking a cake.
2) If Rita is baking a cake, then she is not 

practicing her flute.
3) If Rita is not practicing her flute, then her 

father will not buy her a car.
4) Therefore Rita’s father will not buy her a car.

We may write the argument as
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Example (2/3)

• Example 2.24 (cont.):
We establish the validity of the argument as 
follows:
Steps Reasons
1) p → ¬q Premise
2) ¬q → ¬r Premise
3) p → ¬r This follows from steps (1) and (2) 

and the Law of the Syllogism
4) p Premise
5) ∴¬r This follows from steps (4) and (3) 

and the Rule of Detachment
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Example (3/3)

• Example 2.24 (cont.):
A second way to validate the argument as 
follows:
Steps Reasons
1) p Premise
2) p → ¬q Premise
3) ¬q Steps (1) and (2) and the Rule of 

the Detachment
4) ¬q → ¬r Premise
5) ∴¬r Steps (3) and (4) and the Rule of 

Detachment
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Rule of Inference: Modus Tollens (1/4)

• Example 2.25 (Modus Tollens): The rule of 
inference called Modus Tollens (“method of 
denying”) is given by

This follows from the logical implication 
[(p → q) ∧ ¬q] → ¬p.

54

Rule of Inference: Modus Tollens (2/4)

• Example 2.25 (cont.):
The following exemplifies the use of Modus 
Tollens in making a valid inference:

1) If Connie is elected president of Phi Delta 
sorority, then Helen will pledge that sorority. p → q

2) Helen did not pledge Phi Delta sorority. ¬q
3) Therefore Connie was not elected president 

of Phi Delta sorority. ∴¬p
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Rule of Inference: Modus Tollens (3/4)

• Example 2.25 (cont.):
Use Modus Tollens to show that the following 
argument is valid (for primitive statements p, r, s, 
t, and u).

p → r
r → s
t ∨ ¬s

¬t ∨ u
¬u
∴¬p
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Rule of Inference: Modus Tollens (4/4)

• Example 2.25 (cont.):
Steps Reasons
1) p → r, r → s Premises
2) p → s Step (1) and the Law of the Syllogism
3) t ∨ ¬s Premise
4) ¬s ∨ t Step (3) and the Commutative Law of ∨
5) s → t Step (4) and the fact that ¬s ∨ t ⇔ s → t
6) p → t Steps (2) and (5) and the Law of the Syllogism
7) ¬t ∨ u Premise
8) t → u Step (7) and the fact that ¬t ∨ u ⇔ t → u
9) p → u Steps (6) and (8) and the Law of the Syllogism
10) ¬u Premise
11) ∴¬p Steps (9) and (10) and Modus Tollens
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Rule of Inference: Rule of Conjunction

• Example 2.26 (Rule of Conjunction): If p, q are 
true statements, then p ∧ q is a true statement. 
We call this rule the Rule of Conjunction and 
write it in tabular form as
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Rule of Inference: 
Rule of Disjunctive Syllogism (1/2)

• Example 2.27 (Rule of Disjunctive Syllogism): 
The Rule of Disjunctive Syllogism comes about 
from the logical implication

[(p ∨ q) ∧ ¬p] → q,
which we can derive from Modus Ponens by 
observing that p ∨ q ⇔ ¬p → q.
In tabular form we write
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Rule of Inference: 
Rule of Disjunctive Syllogism (2/2)

• Example 2.27 (cont.):

1) Bart’s wallet is in his back pocket or it is 
on his desk. 

2) Bart’s wallet is not in his back pocket.
3) Therefore Bart’s wallet in on his desk.
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Rule of Inference: Rule of Contradiction (1/2)

• Example 2.28 (Rule of Contradiction): Let p
denote an arbitrary statement, and F0 a  
contradiction. Then (¬p → F0) → p is a tautology.

If p is a statement and ¬p → F0 is 
true, then ¬p must be false because 
F0 is false. So then we have p true.
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Rule of Inference: Rule of Contradiction (2/2)

• Example 2.28 (cont.): The Rule of Contradiction
is the basis of a method for establishing the 
validity of an argument – namely, the method of 
Proof by Contradiction.
In general, when we want to establish the 
validity of the argument 

We can establish the validity of the logically 
equivalent argument

62

Summary of Inference Rules (1/2)

63

Summary of Inference Rules (2/2)
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Apply Rules (1/3)

• Example 2.29: Our first example demonstrates 
the validity of the argument

Steps Reasons
1) p → r Premise
2) ¬r → ¬p Step (1) and p → r ⇔ ¬r → ¬p
3) ¬p → q Premise
4) ¬r → q Steps (2) and (3) and the Law of the Syllogism
5) q → s Premise
6) ∴ ¬r → s Steps (4) and (5) and the Law of the Syllogism
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Apply Rules (2/3)

• Example 2.30: Establish the validity of the 
argument

Steps Reasons
1) p → q Premise
2) q → (r ∧ s) Premise
3) p → (r ∧ s) Steps (1) and (2) and the Law of the Syllogism
4) p ∧ t Premise
5) p Step (4) and the Rule of Conjunctive Simplification
6) r ∧ s Step (5) and (3) and the Rule of Detachment
7) r Step (6) and the Rule of Conjunctive Simplification

66

Apply Rules (3/3)

• Example 2.30 (cont.):

8) ¬r ∨ (¬t ∨ u) Premise
9) ¬(r ∧ t) ∨ u Step (8), the Associative Law of ∨, and 

DeMorgan’s Laws
10) t Step (4) and the Rule of Conjunctive 

Simplification
11) r ∧ t Steps (7) and (10) and the Rule of 

Conjunction
12) ∴u Steps (9) and (11) and the Rule of

Disjunctive Syllogism
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Proof by Contradiction (1/3)

• Example 2.32: Consider the argument

• To establish the validity for this argument, we 
assume the negation ¬p of the conclusion p as 
another premise. The objective now is to use 
these four premises to derive a contradiction of 
F0. Our derivation follows.
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Proof by Contradiction (2/3)

• Example 2.32 (cont.):

Steps Reasons
1) ¬p ↔ q Premise
2) (¬p → q) ∧ (q → ¬p) Step (1) and (¬p ↔ q) ⇔ [(¬p → q) 

∧ (q → ¬p)]
3) ¬p → q Step (2) and the Rule of Conjunctive 

Simplification
4) q → r Premise
5) ¬p → r Steps (3) and (4) and the Law of

the Syllogism
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Proof by Contradiction (3/3)

• Example 2.32 (cont.):

6) ¬p Premise (the one assumed)
7) r Steps (5) and (6) and the Rule of

Detachment
8) ¬r Premise
9) r ∧ ¬r (⇔ F0) Steps (7) and (8) and the Rule

of Conjunction
10) ∴p Steps (6) and (9) and the method

of Proof by Contradiction
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Principle

• [p → (q → r)] ⇔ [(p ∧ q) → r]
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Example (1/3)

• Example 2.33: In order to establish the validity 
of the argument

We consider the corresponding argument

72

Example (2/3)

• Example 2.33 (cont.):
Steps Reasons
1) q Premise
2) q → (u ∧ s) Premise
3) u ∧ s Steps (1) and (2) and the Rule of

Detachment
4) u Step (3) and the Rule of Conjunctive 

Simplification
5) u → r Premise
6) r Steps (4) and (5) and the Rule of

Detachment
7) s Step (3) and the Rule of Conjunctive 

Simplification
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Example (3/3)

• Example 2.33 (cont.):

8) r ∧ s Steps (6) and (7) and the Rule of
Conjunction

9) (r ∧ s) → (p ∨ t) Premise
10) p ∨ t Steps (8) and (9) and the Rule of

Detachment
11) ¬t Premise
12) ∴p Steps (10) and (11) and the Rule of 

Disjunctive Syllogism
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Counterexample of the Argument (1/3)

• Given an argument p1 ∧ p2 ∧ p3 ∧ … pn → q
we say that the argument is invalid if it is 
possible for each of the premises p1, p2, p3, …, pn
to be true (with truth value 1), while the 
conclusion q is false (with truth value 0).
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Counterexample of the Argument (2/3)

• Example 2.34: Consider the primitive 
statements p, q, r, s, and t and the argument

Show that this is an invalid argument.

76

Counterexample of the Argument (3/3)

• Example 2.35: What can we say about the 
validity or invalidity of the following argument? 
Here p, q, r, and s denote primitive statements.

• EXERCISES 2.3: 4, 6, 8
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Outline

• Basic Connectives and Truth Tables
• Logical Equivalence: The Laws of Logic
• Logical Implication: Rules of Inference
• The Use of Quantifiers
• Quantifiers, Definitions, and the Proofs of 

Theorems

78

Open Statement

• Definition 2.5: A declarative sentence is an 
open statement if
1. it contains one or more variables, and
2. it is not a statement, but
3. it becomes a statement when the variables in 

it are replaced by certain allowable choices.

These allowable choices 
constitute what is called the 

universe or universe of discourse
for the open statement.

79

Notation of Open Statement (1/2)

• The open statement “The number x + 2 is an 
even integer” is denoted by p(x) [or q(x), etc.].

• Then ¬p(x) may be read “The number x + 2 is not
an even integer.”

• We use q(x, y) to represent an open statement 
that contains two variables.

80

Notation of Open Statement (2/2)

• Two types of quantifiers
– The existential quantifier ∃
– The universal quantifier ∀

• Example: r(x): “2x is an even integer” with the 
universe of all integers.
∀x r(x) and ∃x r(x) both are true statements.

• The variable x in each of open statements p(x) is 
called a free variable (of the open statement).

• For ∃x p(x, y), ∀x p(x, y)
– x is a bounded variable
– y is a free variable
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Example (1/3)

• Example 2.36: Here the universe comprises all 
real numbers.

p(x):   x ≥ 0 r(x):   x2 – 3x – 4 = 0
q(x):   x2 ≥ 0 s(x):   x2 – 3 > 0

1) ∃x [p(x) ∧ r(x)] 

2) ∀x [p(x) → q(x)]

3) ∀x [q(x) → s(x)]

4) ∀x [r(x) ∨ s(x)]

5) ∀x [r(x) → p(x)]

TRUE

TRUE

FALSE

FALSE

FALSE
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Example (2/3)

• Example 2.39: In the following program 
segment, n is an integer variable and the 
variable A is an array A[1], A[2], …, A[20] of 20 
integer values.

for n := 1 to 20 do
A[n] := n * n – n

Represent the following statements about the 
array A in quantified form, where the universe 
consists of all integers from 1 to 20, inclusive.

83

Example (3/3)

• Example 2.39 (cont.):
1) Every entry in the array is nonnegative:

∀n (A[n] ≥ 0).
2) There exist two consecutive entries in A where 

the larger entry is twice the smaller:
∃n (A[n + 1] = 2A[n]).

3) The entries in the array are sorted in (strictly)
ascending order:

∀n [(1 ≤ n ≤ 19) → (A[n] < A[n+1])].
4) The entries in the array are distinct:

∀m ∀n [(m ≠ n) → (A[m] ≠ A[n])], or
∀m, n [(m < n) → (A[m] ≠ A[n])]. 84

Definitions (1/2)

• Definition 2.6: Let p(x), q(x) be open statements 
defined for a given universe. The open 
statements p(x) and q(x) are called (logically) 
equivalent, and we write ∀x [p(x) ⇔ q(x)] when 
the biconditional p(a) ↔ q(a) is true for each 
replacement a from the universe (that is, p(a) ⇔
q(a) for each a in the universe). If the implication 
p(a) → q(a) is true for each a in the universe (that 
is, p(a) ⇒ q(a) for each a in the universe), then 
we write ∀x [p(x) ⇒ q(x)] and say that p(x)
logically implies q(x).



85

Definitions (2/2)

• Definition 2.7: For open statements p(x), q(x) —
defined for a prescribed universe — and the 
universally quantified statement ∀x [p(x) → q(x)]
we define:
1) The contrapositive of ∀x [p(x) → q(x)] to be 

∀x [¬q(x) → ¬p(x)].
2) The converse of ∀x [p(x) → q(x)] to be 

∀x [q(x) → p(x)].
3) The inverse of ∀x [p(x) → q(x)] to be 

∀x [¬p(x) → ¬q(x)].
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Summarization of Quantifiers

87

Example

• Example 2.42: Here the universe consists of all 
the integers, and the open statements r(x), s(x)
are given by

r(x): 2x + 1 = 5 s(x): x2 = 9.

is false.

is true.

(is not logically equivalent to)

(does not logically imply) 88

Logical Equivalences and Logical 
Implications for Quantified Statements

• For a prescribed universe and any statements 
p(x), q(x) in the variable x:

∃x [p(x) ∧ q(x)] ⇒ [∃x p(x) ∧ ∃x q(x)]
∃x [p(x) ∨ q(x)] ⇔ [∃x p(x) ∨ ∃x q(x)]
∀x [p(x) ∧ q(x)] ⇔ [∀x p(x) ∧ ∀x q(x)]
[∀x p(x) ∨ ∀x q(x)] ⇒∀x[ p(x) ∨ q(x)]

How about the 
other direction?
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Rules for Negating Statements

Rules for Negating Statements with One Quantifier
• ¬[∀x p(x)] ⇔ ∃x ¬p(x)
• ¬[∃x p(x)] ⇔∀x ¬p(x)
• ¬[∀x ¬p(x)] ⇔ ∃x ¬¬p(x) ⇔ ∃x p(x)
• ¬[∃x ¬p(x)] ⇔∀x ¬¬p(x) ⇔∀x p(x)

90

Order of Quantifiers

• Example 2.48: We restrict ourselves here to the 
universe of all integers and let p(x, y) denote the 
open statement “x + y = 17.”

The statement                        is true.

The statement                       is false.

91

Negate the Definition of Limit

• Example 2.50: Negate the definition of limit.

• EXERCISE 2.4: 18
92

Outline

• Basic Connectives and Truth Tables
• Logical Equivalence: The Laws of Logic
• Logical Implication: Rules of Inference
• The Use of Quantifiers
• Quantifiers, Definitions, and the Proofs of 

Theorems
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The Rule of Universal Specification
• If an open statements becomes true for all

replacements by the members in a given 
universe, then that open statement is true for 
each specific individual member in that universe. 
(A bit more symbolically — if p(x) is an open 
statement for a given universe, and if ∀x p(x) is 
true, then p(a) is true for each a in the universe.)

94

Example (1/9)

• Example 2.53: a) For the universe of all people, 
consider the open statements

m(x):    x is a mathematics professor
c(x) :    x has studied calculus.

Now consider the following argument.
– All mathematics professors have studied 

calculus.
– Leona is a mathematics professor.
– Therefore Leona has studied calculus.

95

Example (2/9)

• Example 2.53 (cont.):
Let l represent this particular woman (in our 
universe) named Leona.

Steps Reasons
1. ∀x [m(x) → c(x)] Premise
2. m(l) Premise
3. m(l) → c(l) Step (1) and the Rule of  Universal 

Specification
4. ∴ c(l) Steps (2) and (3) and the Rule of 

Detachment 96

Example (3/9)

• Example 2.53 (cont.): b) For an example of a 
more mathematical nature let us consider the 
universe of all triangles in the plane in 
conjunction with the open statements

p(t): t has two sides of equal length.
q(t): t is an isosceles triangle.
r(t): t has two angles of equal measure.

Let triangle XYZ with no two angles of equal 
measure be designed by c.
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Example (4/9)

• Example 2.53 (cont.):

In triangle XYZ there is no pair of 
angles of equal measure.
If a triangles has two sides of equal 
length, then it is isosceles.
If a triangle is isosceles, then is has 
two angles of equal measure. 
Therefore triangle XYZ has no two 
sides of equal length.

is a valid one — as evidenced by the following.
98

Example (5/9)

• Example 2.53 (cont.):
Steps Reasons
1. ∀t [p(t) → q(t)] Premise
2. p(c) → q(c) Step (1) and the Rule of Universal 

Specification
3. ∀t [q(t) → r(t)] Premise
4. q(c) → r(c) Step (3) and the Rule of Universal 

Specification
5. p(c) → r(c) Steps (2) and (4) and the Law of 

the Syllogism
6. ¬r(c) Premise
7. ∴ ¬p(c) Steps (5) and (6) and Modus Tollens
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Example (6/9)

• Example 2.53 (cont.): c) Here we’ll consider the 
universe to be made up of the entire student 
body at a particular college. One specific student, 
Mary Gusberti, will be designated by m.
For this universe and the open statements.

j(x): x is a junior     s(x): x is a senior
p(x): x is enrolled in a physical education class.
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Example (7/9)

• Example 2.53 (cont.):
We consider the argument :
No junior or senior is enrolled in a physical 
education class.
Mary Gusberti is enrolled in a physical education 
class.
Therefore Mary Gusberti is not a senior.
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Example (8/9)

• Example 2.53 (cont.):
Steps Reasons
1. ∀x [(j(x) ∨ s(x)) →¬p(x)] Premise
2. p(m) Premise
3. (j(m) ∨ s(m)) →¬p(m) Step(1) and the Rule of

Universal Specification
4. p(m) →¬(j(m) ∨ s(m)) Step(3), (q → t) ⇔ (¬t →

¬q), and the Law of 
Double Negation

5. p(m) → (¬j(m) ∧ ¬s(m)) Step (4) and DeMorgan’s 
Law
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Example (9/9)

• Example 2.53 (cont.):
6. ¬j(m) ∧ ¬s(m) Steps (2) and (5) and the 

Rule of Detachment 
(or Modus Ponens)

7. ∴ ¬s(m) Step (6) and  the Rule of 
Conjunctive Simplification
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Some Possible Errors (1/3)

• Within the universe of all polygons in the plane, 
let c denote one specific polygon – the 
quadrilateral EFGH, where the measure of angle 
E is 91°. For the open statements
p(x): x is a square q(x): x has four sides,
the following argument is invalid.

All squares have four sides.
Quadrilateral EFGH has four sides.
Therefore quadrilateral EFGH is a square.
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Some Possible Errors (2/3)

• Within the universe of all polygons in the plane, 
let c denote one specific polygon – the 
quadrilateral EFGH, where the measure of angle 
E is 91°. For the open statements
p(x): x is a square q(x): x has four sides,
the following argument is invalid.

All squares have four sides.
Quadrilateral EFGH has four sides.
Therefore quadrilateral EFGH is a square.



105

Some Possible Errors (3/3)

• p(x): x is a square q(x): x has four sides,
The following argument is invalid.

All squares have four sides.
Quadrilateral EFGH is not a square.
Therefore quadrilateral EFGH does not have 
four sides.

106

The Rule of Universal Generalization

• If an open statement p(x) is proved to be true 
when x is replaced by any arbitrarily chosen
element c from our universe, then the universally 
quantified statement ∀x p(x) is true. Furthermore, 
the rule extends beyond a single variable. So if, 
for example, we have an open statement q(x, y)
that is proved to be true when x and y are 
replaced by arbitrarily chosen elements from the 
same universe, or their own respective 
universes, then the universally quantified 
statement ∀x∀y q(x, y)[or, ∀x, y q(x, y)] is true. 
Similar results hold for the cases of three or 
more variables.
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Example (1/5)

• Example 2.54: Let p(x), q(x), and r(x) be open 
statements that are defined for a given universe. 
We show that the argument

is valid by considering the following.

108

Example (2/5)

• Example 2.54 (cont.):
Steps Reasons
1) ∀x [p(x) → q(x)] Premise
2) p(c) → q(c) Step (1) and the Rule of 

Universal Specification
3) ∀x [q(x) → r(x)] Premise
4) q(c) → r(c) Step (3) and the Rule of 

Universal Specification
5) p(c) → r(c) Steps (2) and (4) and the Law 

of the Syllogism
6) ∴∀x [p(x) → r(x)] Step (5) and the Rule of 

Universal Generalization
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Example (3/5)

• Example 2.56: The steps and reasons needed 
to establish the validity of the argument

are given as follows.

Steps Reasons
1) ∀x [p(x) ∨ q(x)] Premise
2) p(c) ∨ q(c) Step (1) and the Rule of 

Universal Specification
110

Example (4/5)

• Example 2.56 (cont.):

3) ∀x [(¬p(x) ∧ q(x)) → r(x)] Premise
4) [¬p(c) ∧ q(c)] → r(c) Step (3) and the Rule 

of Universal Specification
5) ¬r(c) →¬[¬p(c) ∧ q(c)] Step (4) and 

s → t ⇔¬t →¬ s
6) ¬r(c) → [p(c) ∨ ¬q(c)] Step (5), DeMorgan’s 

Law, and the Law of 
Double Negation

7) ¬r(c) Premise (assumed)
8) p(c) ∨ ¬q(c) Step (7) and (6) and 

Modus Ponens
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Example (5/5)

• Example 2.56 (cont.):
9) [p(c) ∨ q(c)] ∧ [p(c) ∨ ¬q(c)]Steps (2) and (8) and the 

Rule of Conjunction
10) p(c) ∨ [q(c) ∧ ¬q(c)] Step (9) and the 

Distributive Law of 
∨ over ∧

11) p(c) Step (10), 
q(c) ∧ ¬q(c) ⇔ F0, and 
p(c) ∨ F0 ⇔ p(c)

12) ∴∀x [¬r(x) → p(x)] Steps (7) and (11) 
and the Rule of Universal 
Generalization 112

Read by Yourself

• Definition 2.8
• Theorem 2.2
• Theorem 2.3
• Theorem 2.4
• Theorem 2.5
• Suppose we want to prove ∀m [p(m) → q(m)], we 

could prove it by the contrapositive method or by 
contradiction.
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Homework Assignment #2

• EXERCISES 2.1
4, 6

• EXERCISES 2.2
4, 8, 10

• EXERCISES 2.3
4, 6, 8

• EXERCISE 2.4
18

• EXERCISE 2.5
10


