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Statements (1/5)

» Statements (or propositions): declarative
sentences that are either true or false but not
both.
* Examples:
— p: Combinatorics is a required course for sophomores.
— (: Margaret Mitchell wrote Gone with the Wind.
-rn2+3=5.

* Non-statements: (do not have truth values)
— “What a beautiful evening!” (exclamation)
— “Get up and do your exercises.” (command)

Statements (2/5)

Primitive statements: there is really no way to
break them down into anything simpler.

New statements can be obtained from existing
ones in two ways.

Negation: We do not consider the negation of a
primitive statement to be a primitive statement.

— p : Combinatorics is not a required course
for sophomores.




Statements (3/5)

2. Compound statement, using the following
logical connectives:

a)

Conjunction A

c) Implication —

Statements (4/5)

p — g: “If combinatorics is a required course for
sophomores, then Margaret Mitchell wrote Gone

o . . . with the Wind.”
p A g: “Combinatorics is a required course for _
sophomores, and Margaret Mitchell wrote Gone with Alternatively, we can say
the Wind.” 1. “If p, then g.”

b) Disjunction v 2. “p is sufficient for g.”
p v g (inclusive): true if one or the other of p, q is true 3. “p is a sufficient condition for g.”
or if both of the statements p, q are true. 4. “gis necessary for p.”
P ¥ g (exclusive): true if one or the other of p, q is 5. “q is a necessary condition for p.”
true but not both of the statements p, q are true. 6. “q only if p.”
5
Statements (5/5) Truth Table
« The statement p is called the hypothesis of the “0” for false and “1” for true
implication; g is called the conclusion.

p <> q: “Combinatorics is a required course for

sophomores, if and only if Margaret Mitchell wrote

Gone with the Wind.”

o “pifand only if g” or “p is necessary and sufficient
for g.”

» Abbreviate “p if and only if " as “p iff g.”

Note: A sentence such as “The number x is an
integer.” is not a statement because its truth
value cannot be determined until a numerical
value is assigned for x.
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Example of implication (1/2)

 Example 2.2: It is almost the week before
Christmas and Penny will be attending several
parties that week. Ever conscious of her weight,
she plans not to weigh herself until the day after
Christmas. Considering what those parties may
do to her waistline by then, she makes the
following resolution for the December 26
outcome: “If | weigh more than 120 pounds, then
| shall enroll in an exercise class.”

Example of implication (2/2)
Example 2.2 (cont.):
Let p and g denote the (primitive) statements

p: | weigh more than 120 pounds.
g: I shall enroll in an exercise class.

Then Penny’s statement (implication) is given by
P—Q.

m We shall consider the truth values of this
particular example of p —» q
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Example of Compound Statement (1/2)

Example 2.4: Let us examine the truth table for
the compound statement “Margaret Mitchell
wrote Gone with the Wind, and if 2 + 3 # 5, then
combinatorics is a required course for
sophomores.”

— p: Combinatorics is a required course for sophomores.
— ¢: Margaret Mitchell wrote “Gone with the Wind”.
-rn2+3=5.

W JA(r—p)
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Example of Compound Statement (2/2)

Example 2.4 (cont.):

plq | r|—-r|=-r—=p|qgA(=r—p)
01010
010711
O(11]0
O 111
1 10]0
11011
1| 1]0
| | |
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Tautology and Contradiction

» Definition 2.1: A compound statement is called
a tautology if it is true for all truth value
assignments for its component statement. If a
compound statement is false for all such
assignments, then it is called a contradiction.

P|lq|pvqg||lp=(V|| =p | =PAqg ||PA(=pAG)
010 0 1 0 0

]
Use the symbol / ! Use the symbol 0
T, to denote ] F,todenoteany [ O
| | any tautology. ] contradiction. 0

« EXERCISES 2.1: 4,6
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Logical Equivalence

 Definition 2.2: Two statements s,, s, are said to
be logically equivalent, and we write s, < s,,
when the statement s, is true (respectively, false)
if and only if the statement s, is true (respectively,
false).

P | q =p | "PVYq P—4q
010 | | |
011 ] ] |
We can eliminate the 0 0 0
connective — from
compound statements. 0 | |

Pvi=p—>( 15

Eliminate Connectives from Compound

Statements
Ppla|lp—=>q|lq—=>p | (p=>qg)A(g—>p) | pegq
010 | | | |
0|1 | 0 0 0
1|0 0 ] 0 0
| ] ] ] | |
Peg) <= (=pvaA(=agyp)

pla | prYg | pvg | paqg | =(pAg) | (pV@ A=(pAg)
010 0 0 0 ] 0
011 ] ] 0 ] ]
1 |0 ] 1 0 ] ]
| | 0 1 ] 0 0




Important Properties (1/2)

 Example 2.8: (DeMorgan’s Laws)

Important Properties (2/2)

 Example 2.9: (Distributive Law)

Pla|prg||=prg)|| =P | ~q [|=PV—q|| PVq |[-(PVa|||-PAr—q

plqg | rillpalgvr) | (paqgdvipar)||lpvigAar) | (pvg)a(pvr)

010 0 | 1 1 1 0 1 1
011 0 1 1 0 1 1 0 0
110 0 1 0 1 1 1 0 0
1] 1 1 0 0 0 0 1 0 0

=(pAQ)e—pVvQ
—(pvg)epa—q

17

01010 0 0 0 0
01011 0 0 0 0
O] 11]0 0 0 0 0
01111 0 0 1 I
010 0 0 1 I

I I 1 1 I
110 I 1 1 I
1] 1 I | 1 I

—_—
—
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The Laws of Logic (1/2)

* For any primitive statements p, g, r, any
tautology T,, and any contradiction F,

H--pep Law of Double Negation

2)-(pvQ) <= -pAaq DeMorgan’s Laws
“(pAg)<=-pvq

pvagegvp Commutative Laws
PAQ<=QqAp

AHpv(vr)<(pvg)vr  Associative Laws
pr@ane(PAagAr

19

The Laws of Logic (2/2)

5 pv(@an<s{pvaga(pvr) Distributive Laws

pr@vne(@Eagv(parn)

6) pvpep Idempotent Laws
PAPp<=DP

7) pvF,<p Identity Laws
PATy&=p

8) pvpeT, Inverse Laws
pA-peF

9 pvTyeT, Domination Laws
pArFye

10)pv(prgep Absorption Laws

pAa(pvg)ep

20




Dual of Statement (1/3)

» Definition 2.3: Let s be a statement. If s contains
no logical connectives other than A and v, then
the dual of s, denoted s, is the statement
obtained from s by replacing each occurrence of
A and v by v and A, respectively, and each
occurrence of T, and F, by F,and T,
respectively.

21

Dual of Statement (2/3)

 If pis any primitive statement, then
- pYis the same as p
— (=p)¥is the same as -p
— pv-pand p A -p are duals of each other
- pv Tyand p A F, are duals of each other

22

Dual of Statement (3/3)

* Theorem 2.1 (The Principle of Duality): Let s
and t be statements that contain no logical
connectives other than A and v. If s < t, then
st <t

®» | aws 2 through 10 in our list can be established
by proving one of the laws in each pair and then
invoking this principle.

23

Substitution Rules

1. Suppose that the compound statement P is a
tautology. If p is a primitive statement that
appears in P and we replace each occurrence
of p by the same statement g, then the resulting
compound statement P, is also a tautology.

2. Let P be a compound statement where p is an
arbitrary statement that appears in P, and let g
be a statement such that g < p. Suppose that
in P we replace one or more occurrences of p
by g. Then this replacement yields the
compound statement P,. Under these
circumstances P; < P.

24




Examples of Substitution Rules (1/3)

 Example 2.10: (Substitution Rule 1)
a) (From DeMorgan’s Laws) P: =(pv q) <> (-p A Q) is a
tautology.
Pi=[(r As)val < [(r As) A-q] is a tautology.
Pyal(ras)v(t—-u)] < [~(ras)A(t—u)]isalsoa
tautology.

25

Examples of Substitution Rules (2/3)

Example 2.10 (cont.): (Substitution Rule 1)
b)

Pla|p—=q| pAp=>gq) | [IpA(p=g)l—q

010 1 0 1
011 1 0 1
1
1

110 0 0
1] 1 1 1

~[pA(p—Qq)] — qis atautology.

» (T o>)A[(r—>s)—> (-tvu)] > (-tvu)isalso
a tautology.

26

Examples of Substitution Rules (3/3)

* Example 2.11: (Substitution Rule 2)
P:p— (p v Q) is a tautology.

P,:p — (=-p v Q) is also a tautology.
(Since =—p < p.)

27

Examples (1/6)

Example 2.12: Negate and simplify the
compound statement (pv q) —> .

) (pvag)>re-(pva)vr

2) -[(pva)—>rl<-[=(pva) vr]
3) "[~(pva)vrl<-=(pvag)A-r
4) ==(pva)a-re (pva)a-r

» -[pvg>rle (v a-r

28




Examples (2/6)

 Example 2.13: Let p, q denote the primitive

statements

p: Joan goes to Lake George.

q: Mary pays for Joan’s shopping spree.
and consider the implication
p — q: If Joan goes to Lake George, then Mary
pays for Joan’s shopping spree.
How to write the negation of p — ¢ in a way
other than simply =(p — q)?

29

Examples (3/6)

 Example 2.13 (cont.):
p: Joan goes to Lake George.
g: Mary pays for Joan’s shopping spree.

(p—>q) <= -(pva) S PpAGESP A
m —(p — Qq): Joan goes to Lake George, but Mary
does not pay for Joan’s shopping spree.

= Note: The negation of an if-then statement does
not begin with the word if. It is not another
implication.

30

Examples (4/6)

 Example 2.15:

P—=4q (|74 "P||I|[92P||["P— ™4

4
0
0
1
|

—_—0 = O S

1 1 | 1
1 1 0 0
0 0 1 1
1 I | |

— The statement -q — —p is called the contrapositive of
the implication p — q.

— The statement q — p is called the converse of p — q.

— The statement -p — —q is called the inverse of p — q.

31

Examples (5/6)

« Example 2.15 (cont.):
Let us consider a specific example where p, q
represent the statements
p: Jeff is concerned about his cholesterol levels.
g: Jeff walks at least 2 miles 3 times a week.

(The implication: p — q). If Jeff is concerned
about his cholesterol levels, then he will walks at
least 2 miles 3 times a week.

(The contrapositive: ~q — —p). If Jeff does not
walk at least 2 miles 3 times a week, then he is
not concerned about his cholesterol levels.

32




Examples (6/6)

* Example 2.15 (cont.):
(The converse: g — p). If Jeff walks at least 2
miles 3 times a week, then he is concerned
about his cholesterol levels.
(The inverse: -p — —q). If Jeff is not concerned
about his cholesterol levels, then he will not
walks at least 2 miles 3 times a week.
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Simplification of Compound Statements (1/2)

 Example 2.16: For primitive statements p, g, IS

there any simpler way to express the compound
statement (p v g) A =(-p A q) — that is, can we
find a simpler statement that is logically
equivalent to the one given?

(Pva Aa(-parq) Reasons

< (Pvag A(--pv-qg) DeMorgan’s Law

<SPpvagapyv-q) Law of Double Negation

< pv(a-q) Distributive Law of v over A
<pvk Inverse Law
=3 Identify Law

Consequently, we see that (pvg) A=(-pAQ) <P s

Simplification of Compound Statements (2/2)

* Example 2.17: Consider the compound
statement =[-[(p v q) A r] v =q], where p, g, r are
primitive statements.

“[-[(pva)arlv-q]  Reasons
< [(pvg) Ar] A--q] DeMorgan’s Law

S[pvagarlag Law of Double Negation
SpPvaga(rag) Associative Law of A
SpPvaga(@ar) Commutative Law of A
Spvgaglar Associative Law of A

SqAar Absorption Law (as well as the

Commutative Laws for A and v)

35

Simplification of Switching Networks (1/4)

A switching network is made up of wires and
switches connecting two terminals T, and T,.
— Open (0): No current flows through it.
— Closed (1): Current does flow through it.

]

R Series network,
pAqQ
L P ® o— —® o— [} —— (| ——e
T Ts T Ts T IF
Parallel network, (
(b)

pvq

(c)

36




Simplification of Switching Networks (2/4)

 Example 2.18:

Simplification of Switching Networks (3/4)

 Example 2.18 (cont.):

P P P PvavDAa(vtvag A(pv-tvr)  Reasons
Spvgvnaty-q)A(-tvr)] Distributive Law of v
over A
?]__ 4 ‘ ! -,32 sSpvligvn)al=tvr)a(tyv =) Commutative Law of A
Spv(@a-t)vi) Aty —g)] Distributive Law of v
The switches in a network . over A
need not act independently Spv(@a-t)vr) A (--tv )] Law of Double Negation
of each other. Spv(@a-t)vi)a-=(=taQg)] DeMorgan’s Law
Spva(=tag)A((-taqg)vr)] Commutative Law of A
This network is represented by the statement (twice)
pvagviNAa(vtvag)A(pyv-tvr). Spv-(-tag A(tAQ) v Distributive Law
(=(=tAqg)A)] of A over v
37 38
Simplification of Switching Networks (4/4) Outline

 Example 2.18 (cont.):
SpVIFVv(=(=tag) An] s as<e F, forany statements

SpvI(-tag)) ar] F, is the identity for v
Spvraa(=tag)] Commutative Law of A
Spvra(tv-g)] DeMorgan’s Law and the Law of

Double Negation

p

t

« EXERCISES 2.2: 4, 8, 10
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» Basic Connectives and Truth Tables

* Logical Equivalence: The Laws of Logic

* Logical Implication: Rules of Inference
* The Use of Quantifiers

e Quantifiers, Definitions, and the Proofs of
Theorems
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Valid Argument (1/2)

Let us consider the implication

(PL AP AP3A ... APy =0
Here n is a positive integer.

The statements p,, p,, ps, ..., P, are called the
premises of the argument.

The statement q is the conclusion of the
argument.

The argument is called valid if whenever each of
the premises py, p,, Ps, -, Py IS true, then the
conclusion g is likewise true.

41

Valid Argument (2/2)

« If any one of p;, p,, Ps, --., P, IS false, then the
hypothesis (p; A P, AP3 A ... A P,) is false and the
implication (p; AP, AP3A ... AP, (IS
automatically true, regardless of the truth value
of q.

®» One way to establish the validity of a given
argument is to show that the statement (p,; A p, A
Ps A ... AP,) — (IS a tautology.

42

Example (1/3)

Example 2.19: Let p, g, r denote the primitive
statements given as
p: Roger studies.
q: Roger plays tennis.
r: Roger passes discrete mathematics.
Now let p,, p,, p; denote the premises
p,: If Roger studies, then he will pass
discrete mathematics.
p,: If Roger doesn’t play tennis, then he’ll
study.
ps: Roger failed discrete mathematics.

43

Example (2/3)

 Example 2.19 (cont.):
We want to determine whether the argument

- (PLAPaAPy)
is valid.
To do so, we rewrite p;, p,, P; as
Pr-p—r Po: 2 —Pp P3: I
and examine the truth table for the implication
[(P>NA(=q—>p)A-r]—q

44




Example (3/3)
» Example 2.19 (cont.):

4 P2 P {‘ﬂ| AP A P_‘] —

P q r p=r =g — p -r (p=r)A(=q—=p)A=r]l—gq

0100 1 0 1
0]10(1 1 0 0
Of11]0 1

0] 1(1 1

|
1o I
Ll1fo|l o
L1 1
® Since the implication is a tautology, we can say that
(P, A P, A P3) = g is a valid argument.
® The truth of the conclusion q is deduced or inferred from
the truth of the premises p;, p,, and p;. 45

1

1

1 1

| 0 1

010 0 1 | 1
1 1

1 1

1 1

Logical Implication

o Definition 2.4: If p, q are arbitrary statements
such that p — q is a tautology, then we say that p
logically implies q and we write p = q to denote
this situation. (We refer to p — q as a logical
implication.)

46

Rule of Inference: Modus Ponens

* Example 2.22 (Modus Ponens or Rule of
Detachment): In symbolic form this rule is
expressed by the logical implication

If (1) pistrue,and (2) p —>qis

true (or p = q), then the

[ [ 1 |

a7

P4

conclusion g must also be true. p
oY P4
0|1 1 0 | -1
10| 0 0 1 )
1] 1

Rule of Inference: Law of the Syllogism (1/2)

« Example 2.23 (Law of the Syllogism): This rule
is given by the logical implication
[P>A)A@—>N]> (P>,
where p, g, and r are any statements.
In tabular form it is written
P—4q
q—r
S.p—>r

48




Rule of Inference: Law of the Syllogism (2/2)

 Example 2.23 (cont.):
We may use it as follows:

1) If the integer 35244 is divisible by 396,
then the integer 35244 is divisible by 66. p—q
2) If the integer 35244 is divisible by 66,

then the integer 35244 is divisible by 3. qor
3) Therefore, if the integer 35244 is divisible

by 396, then the integer 35244 is Lpor

divisible by 3.

49

Example (1/3)

 Example 2.24: Consider the following argument.
1) Rita is baking a cake.

2) If Rita is baking a cake, then she is not
practicing her flute.

3) If Rita is not practicing her flute, then her
father will not buy her a car.

4) Therefore Rita’s father will not buy her a car.
We may write the argumentas p
P —> 9

—lq—)—lr

s 50

Example (2/3)

« Example 2.24 (cont.):
We establish the validity of the argument as

follows:
Steps Reasons
1)p——q Premise

2) ~q— -r Premise

3 p—r This follows from steps (1) and (2)
and the Law of the Syllogism

4Hp Premise

5) ..ar This follows from steps (4) and (3)
and the Rule of Detachment

Example (3/3)

« Example 2.24 (cont.):

A second way to validate the argument as
follows:

Steps Reasons

Dp Premise

2)p— qQ Premise

3) q Steps (1) and (2) and the Rule of

the Detachment

4) =q —> -r Premise

5) ..ar Steps (3) and (4) and the Rule of
Detachment o0




Rule of Inference: Modus Tollens (1/4)

Example 2.25 (Modus Tollens): The rule of
inference called Modus Tollens (“method of
denying”) is given by
P—dq

I

S.Tp
This follows from the logical implication
[(p — q) A =q] = —p.

53

Rule of Inference: Modus Tollens (2/4)

 Example 2.25 (cont.):
The following exemplifies the use of Modus
Tollens in making a valid inference:

1) If Connie is elected president of Phi Delta
sorority, then Helen will pledge that sorority. p—q

2) Helen did not pledge Phi Delta sorority. —q
3) Therefore Connie was not elected president
of Phi Delta sorority. ~ap

54

Rule of Inference: Modus Tollens (3/4)

Example 2.25 (cont.):
Use Modus Tollens to show that the following
argument is valid (for primitive statements p, r, s,
t, and u).

p—or

r—>s

tv s

-tvu

—u

Sop

55

Rule of Inference: Modus Tollens (4/4)

« Example 2.25 (cont.):

Steps Reasons

1)p—>r,r—s Premises

2)p—>s Step (1) and the Law of the Syllogism

3)tv s Premise

4) =s vt Step (3) and the Commutative Law of v

5) s>t Step (4) and the factthat =svt< s —t
6)p—o>t Steps (2) and (5) and the Law of the Syllogism
7)-tvu Premise

8)t—u Step (7) and the fact that -tvu<t—>u
9p-ou Steps (6) and (8) and the Law of the Syllogism
10) —u Premise

11) ..-p Steps (9) and (10) and Modus Tollens
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Rule of Inference: Rule of Conjunction

* Example 2.26 (Rule of Conjunction): If p, q are
true statements, then p A g is a true statement.
We call this rule the Rule of Conjunction and

write it in tabular form as
P
49
S.pA(g

57

Rule of Inference:
Rule of Disjunctive Syllogism (1/2)
 Example 2.27 (Rule of Disjunctive Syllogism):
The Rule of Disjunctive Syllogism comes about
from the logical implication
[(pva) A—p] > a,
which we can derive from Modus Ponens by
observing thatp v q< —-p — Q.
In tabular form we write
PVq
4
c.q

58

Rule of Inference:
Rule of Disjunctive Syllogism (2/2)

« Example 2.27 (cont.):
1) Bart’s wallet is in his back pocket or it is

on his desk. PVq
2) Bart’s wallet is not in his back pocket. 4
3) Therefore Bart’'s wallet in on his desk. .. ¢

59

Rule of Inference: Rule of Contradiction (1/2)

« Example 2.28 (Rule of Contradiction): Let p
denote an arbitrary statement, and F, a
contradiction. Then (-p — Fy) — p is a tautology.

-p— Fy
SoP

p|=-p | F|-p—=F | (mp=>F)—=p
| 0 0 1 ]
0 | 0 0 ]

If p is a statement and —-p —» F; is
true, then —p must be false because
F, is false. So then we have p true. o




Rule of Inference: Rule of Contradiction (2/2)

Summary of Inference Rules (1/2)

° Example 2.28 (COﬂt.) The RU|e Of Contradlctlon Rule of Inference Related Logical Implication MName of Rule
is the basis of a method for estainShing the n p [palp—=gl—q Rule of Detachment
validity of an argument — namely, the method of =1 (Modus Pone)
PFOOf by Contradiction. ) p—yg p—=ginlg—=r)]—=(p—=r) Law ol the Syllogism

. q—=r
In general, when we want to establish the P
Valldlty Of the argument 3) ;_)‘q—r q [(p—gq)r—g]l——p Modus Tollens
(PrAP2A---Apn) =g, e
. o . 49 p Rule of Conjunction
We can establish the validity of the logically 9
. Y
eqUIvalent argument 5) pvyg [(pvgyan-pl—g Rule ol Disjunctive
(Pi A 2 A A Pn A _lq) — F‘O -p Syllogism
g
61 62
Summary of Inference Rules (2/2) Apply Rules (1/3)
6) —-p—F (=p— Fy)—p Rule of .
Oy R Contradiction e Example 2.29: Our first example demonstrates
7 phg (pAg)—p I{";L; (v['l*("linll_j:}l1cli\'c the Valldlty Of the argument
P Simplification
8) p p—=pVvq Rule of Disjunctive p—=r
pvyg Amplification —p—>q
9)  pArg [(prgynlp—=(g—r)l—r Rule of Conditional
P —»I{q —r) ! ! Prool q — S
4 I LT — 8
10) ::, : : [(p—=rinig—r]—I[pvg) —r] Rulii IE‘:LP;:mI' Steps Reasons
PV > ) Dpor Premise
1 p—gq (p=g)nr—=s)nipvirl—(gvs) Ru[f‘ut‘lhc _ 2) -r—p Step (l) and po>re-ar—ap
) G 3)-p—>q  Premise
Tavs _ 4)-r—>q  Steps (2) and (3) and the Law of the Syllogism
12) pP—q [(p—=q)r(r—=35)Ar(—gV—s)]— (-pVv-or) RUI];" 011 lh:‘_ 5) q —>S Premlse
r—s estructive .
—~g Vs Dilemma 6) .. -r > s Steps (4) and (5) and the Law of the Syllogism

Sap N 63
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Apply Rules (2/3)

» Example 2.30: Establish the validity of the
argument pP—q
g— (rAs)
—r VvV (-t V)
p AT
Sou

Steps Reasons

)p—q Premise

2) g > (r A s) Premise

3) p— (r As) Steps (1) and (2) and the Law of the Syllogism
Hpnat Premise

5p Step (4) and the Rule of Conjunctive Simplification

6)ras Step (5) and (3) and the Rule of Detachment

nr Step (6) and the Rule of Conjunctive Simplification
65

Apply Rules (3/3)

 Example 2.30 (cont.): p—>q
q— (rns)
“r VvV (-t Vu)
PAL
Sou

8) - rv (mtvu) Premise
9) ~(rat)vu Step (8), the Associative Law of v, and
DeMorgan’s Laws

10) t Step (4) and the Rule of Conjunctive
Simplification

11)rat Steps (7) and (10) and the Rule of
Conjunction

12) .u Steps (9) and (11) and the Rule of

Disjunctive Syllogism o

Proof by Contradiction (1/3)

» Example 2.32: Consider the argument
—p<q
q—r
=
S.p

» To establish the validity for this argument, we
assume the negation —p of the conclusion p as
another premise. The objective now is to use
these four premises to derive a contradiction of
Fo,. Our derivation follows.
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Proof by Contradiction (2/3)

« Example 2.32 (cont.): —P<gq

q — F
-
S P
Steps Reasons
1) -peq Premise
2) (=p— ) A (q— —p) Step (1) and (=p <> q) < [(=p > Q)
A (q— =p)]
3)-p—>q Step (2) and the Rule of Conjunctive
Simplification
Hagor Premise
5 -p-o>r Steps (3) and (4) and the Law of

the Syllogism
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Proof by Contradiction (3/3)

 Example 2.32 (cont.): —r<g¢
q—>r

'
oD

6) —p Premise (the one assumed)

nr Steps (5) and (6) and the Rule of
Detachment

8) —r Premise

9 ra-r(eFy Steps (7) and (8) and the Rule
of Conjunction

10) ..p Steps (6) and (9) and the method

of Proof by Contradiction
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Principle

*Po>@o>nNlelPrg)—T]
plgq | r | pAaq | (pAag)—=r | gq—r | p—(g—T)

01010 0 | |
01071 0 1 1
o110 0 1 1
01171 0 | |
010 0 1 1 |

1 1

( (

011 0
110 1 )
1] 1 ] 1 1 |

—
—_—
~

1
1
1
1

[(PrAP2A-Ap) = (gD [(PrApIA-Apy Ag) —r]
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Example (1/3)

* Example 2.33: In order to establish the validity
of the argument U—r
(raAs)y—(pVvi)
qg— (UNS)

—r

Sq=>p

We consider the corresponding argument
u—r
(ras)— (pVvi)
g — (U AS)

=t

q
S P 71

Example (2/3) “—7

(ras)—(pVvr)

« Example 2.33 (cont.): qr_’ )

Steps Reasons q

1)q Premise -

2)g—>(UAs) Premise

3)uns Steps (1) and (2) and the Rule of
Detachment

4)u Step (3) and the Rule of Conjunctive
Simplification

5u—-r Premise

6) r Steps (4) and (5) and the Rule of
Detachment

7)s Step (3) and the Rule of Conjunctive

Simplification
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Example (3/3) #—r Counterexample of the Argument (1/3)

(ras)y—(pvi)

« Example 2.33 (cont.): g it « Given an argument p; A P, APg A ... Py = q

- we say that the argument is invalid if it is
possible for each of the premises p,, p,, p3, -, Py
to be true (with truth value 1), while the

8)ras Steps (6) and (7) and the Rule of conclusion q is false (with truth value 0).
Conjunction
9)(ras)>(pvt) Premise

q
S P

10)pwvt Steps (8) and (9) and the Rule of
Detachment
11) -t Premise
12) -.p Steps (10) and (11) and the Rule of
Disjunctive Syllogism
73 74
Counterexample of the Argument (2/3) Counterexample of the Argument (3/3)
« Example 2.34: Consider the primitive « Example 2.35: What can we say about the
statements p, q, r, S, and t and the argument validity or invalidity of the following argument?
P Here p, g, r, and s denote primitive statements.
pVq P —(q
q— (r—ys) q—>5
t—r r— =y
s — i A
S.op

Show that this is an invalid argument.

« EXERCISES 2.3: 4,6, 8

75 76




Outline

Basic Connectives and Truth Tables
Logical Equivalence: The Laws of Logic
Logical Implication: Rules of Inference
The Use of Quantifiers

Quantifiers, Definitions, and the Proofs of
Theorems

7

Open Statement

» Definition 2.5: A declarative sentence is an
open statement if

1. it contains one or more variables, and
2.1t is not a statement, but

3. it becomes a statement when the variables in
it are replaced by|certain allowable choices|

These allowable choices
constitute what is called the
universe or universe of discourse
for the open statement.

78

Notation of Open Statement (1/2)

The open statement “The number x + 2 is an
even integer” is denoted by p(x) [or g(x), etc.].

Then —-p(x) may be read “The number x + 2 is not
an even integer.”

We use q(x, y) to represent an open statement
that contains two variables.
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Notation of Open Statement (2/2)

« Two types of quantifiers
— The existential quantifier 3
— The universal quantifier v
« Example: r(x): “2x is an even integer” with the
universe of all integers.
mp VX r(x) and 3x r(x) both are true statements.

* The variable x in each of open statements p(X) is
called a free variable (of the open statement).

 For Ix p(x, y), VX p(X, y)
— X is a bounded variable

- yis a free variable
80




Example (1/3)

 Example 2.36: Here the universe comprises all
real numbers.

p(x): x>0 rx): x2-3x-4=0
qx): x2>0 s(x): x2-3>0

1) Ix [p(X) A r(x)] TRUE
2) Vx[p(x) = q(x)] TRUE
3) vx[q(x) = s(X)] FALSE
4) VX [r(x) v s(x)] FALSE
5) VX [r(x) = p(X)] FALSE
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Example (2/3)

 Example 2.39: In the following program
segment, n is an integer variable and the
variable A is an array A[1], A[2], ..., A[20] of 20
integer values.
for n := 1 to 20 do
A[n] :=n *n-n
Represent the following statements about the
array A in quantified form, where the universe
consists of all integers from 1 to 20, inclusive.
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Example (3/3)

» Example 2.39 (cont.):

1) Every entry in the array is nonnegative:
vn (A[n] = 0).
2) There exist two consecutive entries in A where
the larger entry is twice the smaller:
an (A[n + 1] = 2A[n])).
3) The entries in the array are sorted in (strictly)
ascending order:
vn [(1<n<19) - (A[n] < A[n+1])].
4) The entries in the array are distinct:
vm vn [(m = n) — (A[m] = A[n])], or
vm, n [(m<n) — (A[m] = A[n])]. 63

Definitions (1/2)

» Definition 2.6: Let p(x), g(x) be open statements
defined for a given universe. The open
statements p(x) and q(x) are called (logically)
equivalent, and we write ¥x [p(X) < q(x)] when
the biconditional p(a) <> g(a) is true for each
replacement a from the universe (that is, p(a) <
g(a) for each a in the universe). If the implication
p(a) — q(a) is true for each a in the universe (that
is, p(a) = q(a) for each a in the universe), then
we write VX [p(X) = q(x)] and say that p(x)
logically implies q(x).

84




Definitions (2/2)

» Definition 2.7: For open statements p(x), q(x) —

Summarization of Quantifiers

i . . Statement When Is It True? When Is It False?
defined for a prescribed universe — and the , . - .
i . dx p(x) For some (at least one) a in For every a in the universe,
Unlversa”y quantlfled statement VX [p(X) —> q(X)] the universe, p(a) is true. pla) is false.
we define: Vx p(x) For every replacement a from There is at least one replacement
.- tl iverse, p(a) is true. 7 from th iverse for whick
l) The ContrapOSItlve of Vx [p(X) N q(X)] to be he universe, p(a) is true z/:)((l}n;];l\ f;izfll\erse or which
VX [_Iq(X) - _lp(X)] ' dx —p(x) For at least one choice a in For every replacement @ in the
2) The converse of Vx [p(X) N q(X)] to be the universe, p(a) is false, so universe, p(a) is true.
v its negation —p(a) is true.
X [q (X) - p(X)] Y —p(x) For every replacement a from There is at least one replacement
3) The inverse of VX [p(x) - q(X)] to be the universe, p(a) is false and a from the universe for which
VX [_Ip(X) N _Iq(x)] its negation —p(a) is true. —p(a) is false and p(a) is true.
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Example Logical Equivalences and Logical

* Example 2.42: Here the universe consists of all
the integers, and the open statements r(x), s(x)
are given by

rx): 2x+1=5 s(x): x2=9.

dx r(x) A Jx s(x) is true.
dx [r(x) As(x)] is false.

mp dx [r(x) Asx)] <A [Fx r(x) ATx s(x)]
(is not logically equivalent to)

[Tx r(x) Adxs(x)] & x [r(x) As(x)]

(does not logically imply) 87

Implications for Quantified Statements

» For a prescribed universe and any statements
p(x), g(x) in the variable x:

3 [p() A ()] = [3x p(x) A 3x q(x)]
3x [p(x) v ()] <= [Bx p(x) v Ix q(x)]
VX [p(x) A q(x)] <= [vxp(x) A VX q(x)]
[vxp(X) v VX g()][=] VX[ p(x) v 4(X)]

How about the F

other direction?
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Rules for Negating Statements

Rules for Negating Statements with One Quantifier
* VX p(X¥)] < 3Ix =p(x)

* =[3x p(x)] < Vx =p(x)

o —[VX =p(X)] < Ix =—p(X) < Ix p(X)

o —[IX p(X)] & VX ——=p(X) < VX p(X)
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Order of Quantifiers

 Example 2.48: We restrict ourselves here to the
universe of all integers and let p(x, y) denote the
open statement “x +y =17."

The statement Vx Iy p(x, y) is true.

The statement 3y Vx p(x, y)is false.
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Negate the Definition of Limit

« Example 2.50: Negate the definition of limit.
lim f(x) =L & Ve>038>0

X—a

Yx[(0<|x —al <) = (|f(x)—L| <€)
lim f(x) # L

= Ve=03F6=0VVx[(0<|x —al<d) — (|f(x)—L|<e)]l
S de=0V=0Ix—-[0<|x—a|l<d)—=(f(x)=L|<e)]
S de==0V=03Jx—-[-0<|x—al<d)V(fx)—L|<e)]
S de>0V5=>0 Ix[-—O0<|x—al<dH) A=(f(x)= L] <e€)]
S de=>0V5=>03x[0O<|x —al<d) A(|f(x)—L|=¢€)]

« EXERCISE 2.4: 18
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Outline

» Basic Connectives and Truth Tables

* Logical Equivalence: The Laws of Logic
» Logical Implication: Rules of Inference
e The Use of Quantifiers

* Quantifiers, Definitions, and the Proofs of
Theorems
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The Rule of Universal Specification

 If an open statements becomes true for all
replacements by the members in a given
universe, then that open statement is true for
each specific individual member in that universe.
(A bit more symbolically — if p(x) is an open
statement for a given universe, and if ¥x p(x) is
true, then p(a) is true for each a in the universe.)
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Example (1/9)

 Example 2.53: a) For the universe of all people,
consider the open statements
m(x): X is a mathematics professor
c(x) : x has studied calculus.

Now consider the following argument.

— All mathematics professors have studied
calculus.

— Leona is a mathematics professor.
— Therefore Leona has studied calculus.
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Example (2/9)

» Example 2.53 (cont.):
Let | represent this particular woman (in our
universe) named Leona.
Yx [m(x) — c(x)]
m(l)
el

Steps Reasons

1. vx [m(x) > c(x)] Premise

2. m(l) Premise

3. m(l) - c(l) Step (1) and the Rule of Universal
Specification

4. . c(l) Steps (2) and (3) and the Rule of

Detachment 95

Example (3/9)

« Example 2.53 (cont.): b) For an example of a
more mathematical nature let us consider the
universe of all triangles in the plane in
conjunction with the open statements

p(t): t has two sides of equal length.
q(t): tis an isosceles triangle.
r(t): t has two angles of equal measure.

Let triangle XYZ with no two angles of equal
measure be designed by c.
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Example (4/9)

* Example 2.53 (cont.):

In triangle XYZ there is no pair of

angles of equal measure. —r(c)

If a triangles has two sides of equal

length, then it is isosceles. Vi [p(t) — q(1)]
If a triangle is isosceles, then is has

two angles of equal measure. Yt [q(t) — r(1)]

Therefore triangle XYZ has no two

sides of equal length. . 7p(©)

Is a valid one — as evidenced by the following.
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Example (5/9)

 Example 2.53 (cont.):

Steps Reasons

1. vt [p(t) — q(t)] Premise

2. p(c) - q(c) Step (1) and the Rule of Universal
Specification

3. Vt[q(t) - r(t)] Premise

4. q(c) — r(c) Step (3) and the Rule of Universal

Specification
5. p(c) - r(c) Steps (2) and (4) and the Law of
the Syllogism
6. —r(c) Premise
7. .. =p(c) Steps (5) and (6) and Modus Tollegrgls

Example (6/9)

« Example 2.53 (cont.): c) Here we’ll consider the
universe to be made up of the entire student
body at a particular college. One specific student,
Mary Gusberti, will be designated by m.

For this universe and the open statements.

J(X): xis ajunior  s(x): x is a senior
p(x): x is enrolled in a physical education class.
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Example (7/9)

« Example 2.53 (cont.):

We consider the argument :

No junior or senior is enrolled in a physical
education class.

Mary Gusberti is enrolled in a physical education
class.

Therefore Mary Gusberti is not a senior.

Vx [(j(x) Vs(x)) = —p(x)]
p(m)
s(m)
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Example (8/9)

* Example 2.53 (cont.):

Steps Reasons
1. vx[((X) v s(x)) > —p(x)] Premise
2. p(m) Premise

3. (j(m) v s(m)) — —p(m) Step(1) and the Rule of

Universal Specification

4. p(m) - =(j(m) v s(m)) Step(3), (> t) < (-t—>

—q), and the Law of
Double Negation

5. p(m) = (=j(m) A —=s(m))  Step (4) and DeMorgan’s

Law
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Example (9/9)

 Example 2.53 (cont.):

6. —j(m) A —=s(m) Steps (2) and (5) and the
Rule of Detachment
(or Modus Ponens)

7. .. —=s(m) Step (6) and the Rule of
Conjunctive Simplification
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Some Possible Errors (1/3)

« Within the universe of all polygons in the plane,
let ¢ denote one specific polygon — the
quadrilateral EFGH, where the measure of angle
E is 91°. For the open statements

p(x): x is a square  q(x): x has four sides,

the following argument is invalid.

All squares have four sides.

Quadrilateral EFGH has four sides.
Therefore quadrilateral EFGH is a square.
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Some Possible Errors (2/3)

« Within the universe of all polygons in the plane,
let ¢ denote one specific polygon — the
guadrilateral EFGH, where the measure of angle
E is 91°. For the open statements
p(x): xisa square  q(x): x has four sides,
the following argument is invalid.

All squares have four sides.

Quadrilateral EFGH has four sides.
Therefore quadrilateral EFGH is a square.
Vx [p(x) — q(x)]
q(c)
p((_‘) 104




Some Possible Errors (3/3)

* p(x): xisasquare q(x): x has four sides,
The following argument is invalid.
All squares have four sides.

Quadrilateral EFGH is not a square.
Therefore quadrilateral EFGH does not have
four sides.

Vx [p(x) = g(x)]
—=p(c)
g (c)
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The Rule of Universal Generalization

« If an open statement p(x) is proved to be true
when x is replaced by any arbitrarily chosen
element ¢ from our universe, then the universally
quantified statement vx p(x) is true. Furthermore,
the rule extends beyond a single variable. So if,
for example, we have an open statement q(x, y)
that is proved to be true when x and y are
replaced by arbitrarily chosen elements from the
same universe, or their own respective
universes, then the universally quantified
statement VxVYy q(x, y)[or, VX, y q(X, y)] Is true.
Similar results hold for the cases of three or
more variables.
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Example (1/5)

* Example 2.54: Let p(x), q(x), and r(x) be open
statements that are defined for a given universe.
We show that the argument

Vx [p(x) = q(x)]
Vx [g(x) = r(x)]

S Vx [p(x) = r(x)]
Is valid by considering the following.
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Example (2/5)

« Example 2.54 (cont.):

Steps Reasons
1) VX [p(x) = q(X)] Premise
2) p(c) - q(c) Step (1) and the Rule of

Universal Specification
3) Vx [q(x) = r(x)] Premise

4) g(c) — r(c) Step (3) and the Rule of
Universal Specification
5) p(c) — r(c) Steps (2) and (4) and the Law

of the Syllogism
6) ..Vx[p(x) > r(x)] Step (5) and the Rule of
Universal Generalization




Example (3/5)

 Example 2.56: The steps and reasons needed
to establish the validity of the argument

Vx [p(x) VvV qg(x)]
Vx [(=p(x) Ag(x)) — r(x)]
S VX [=r(x) = p(x)]

are given as follows.

Steps Reasons
1) X [p(X) v q(xX)] Premise
2) p(c) v q(c) Step (1) and the Rule of

Universal Specification
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Example (4/5)

 Example 2.56 (cont.):

3) VX [(=p(X) A q(X)) > r(x)] Premise

4) [-p(c) A q(c)] — r(c) Step (3) and the Rule
of Universal Specification

5) —r(c) > —[-p(c) nq(c)]  Step (4) and
S>>t t—> =S

6) —r(c) — [p(c) v —q(c)] Step (5), DeMorgan’s
Law, and the Law of
Double Negation

7) —r(c) Premise (assumed)
8) p(c) v —q(c) Step (7) and (6) and
Modus Ponens 110

Example (5/5)

« Example 2.56 (cont.):

9) [p(c) v q(c)] A [p(c) v —q(c)]Steps (2) and (8) and the
Rule of Conjunction

10) p(c) v [a(c) A —q(c)] Step (9) and the
Distributive Law of
v over A

11) p(c) Step (10),
q(c) A —q(c) < F,, and
p(c) v Fy < p(c)

12) VX [=r(x) = p(X)] Steps (7) and (11)
and the Rule of Universal
Generalization
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Read by Yourself

e Definition 2.8
» Theorem 2.2
» Theorem 2.3
e Theorem 2.4
e Theorem 2.5

« Suppose we want to prove ¥m [p(m) — q(m)], we
could prove it by the contrapositive method or by
contradiction.

Assumption Result Derived

Contraposition =g (m) —p(m)

Contradiction p(m) and —¢g(m) Fo
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Homework Assignment #2

EXERCISES 2.1
4,6
EXERCISES 2.2
4, 8, 10
EXERCISES 2.3
4,6, 8
EXERCISE 2.4
18

EXERCISE 2.5
10
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