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[PAPER

Connection-Wise End-to-End Delay Analysis in ATM

Networks

Huei-Wen FERNG' and Jin-Fu CHANG'!, Nonmembers

SUMMARY A systematic method for connection-wise end-
to-end delay analysis in asynchronous transfer mode (ATM) net-
works is proposed. This method consists of the followings: (i)
per-stream nodal analysis; (ii) output processes characterization;
and (iii) moment matching scheme. Following our previous work
[1], we employ H-MMPPs/Slotted D/1 to model ATM queues.
Each virtual connection (VC) in ATM networks can be regarded
as a tandem configuration of such queues. In [1], the per-stream
analytical results for such an H-MMPPs/Slotted D/1 queue have
been provided. In this paper, not only the composite output pro-
cess is exactly characterized, but also the component in an output
process that corresponds to a specific traffic stream is approxi-
mated via a decomposition scheme. A moment matching scheme
to emulate the per-stream output process as a two-state MMPP
is further proposed. Through moment matching, we can then
approximate the connection-wise end-to-end delay by recursively
performing the nodal performance analysis. The connection-wise
end-to-end delay is crucial to network resource decision or control
problems such as call admission control (CAC) and routing.
key words: ATM, MMPP, H-MMPPs/Slotted D/1 queue, tan-
dem queues, end-to-end performance

1. Introduction

Broadband integrated services digital networks (B-
ISDNs) [2] provide a means of exchanging multime-
dia information such as voice, video, image, data, and
etc. Among various transport technologies, ATM is tar-
geted to provide such diverse services in one network.
It provides different quality of service (QoS) accord-
ing to service requirements. Since the QoS require-
ments are defined on a per-connection/stream basis,
performance evaluation in connection-oriented ATM
networks has the need to be done for a specific con-
nection which is complicated by interference from other
traffic streams. Past researches mostly focused on the
performance analysis for an isolated node. Recently,
end-to-end QoS, e.g., connection-wise end-to-end so-
journ delay time, has become more and more atten-
tioned. Knowledge of end-to-end QoS helps us to un-
derstand the interplay between traffic descriptors and
QoS requirements. [3]-[5] are some of the works that
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have appeared in the literature to study the end-to-end
performance in ATM networks. Addie and Zukerman
[3] studied the performance of a tree type ATM network
with discrete-time Gaussian arrivals. Kroner et al. [4]
approximated the end-to-end delay jitter in ATM net-
works with burst silence cell streams. Ren et al. [5] also
studied the end-to-end performance of ATM networks
with On-Off cell streams. For a specific connection or
tagged VC, we shall in this paper examine the end-to-
end cell sojourn delay time. We propose an analytical
method to estimate these delays. These estimates can
be applied to facilitate call admission control, conges-
tion control, routing algorithms and etc.

The output stream of a switch output port or a
multiplexer becomes one of the input streams to the
next stage. Research in this regard can be found in
[6]-[10]. Ohba et al. [6] studied the departure pro-
cess of a designated Gl-stream interfered by other batch
Bernoulli and IPP arrivals. Park et al. [7] studied the
departure process of the lossy geometric server receiv-
ing an MMBP input. Saito [8] studied the departure
process of an N/G/1 queue based on the embedded
Markov chain at departure epochs. Takine et al. [9]
studied the departure process of a discrete-time lossy
deterministic server with correlated arrivals. Klein-
rock [10] discussed the output process of queues with
server(s) and input of exponential type. Among these
past works, [7]-[10] investigated the composite depar-
ture process only. Although [6] dealt with the per-
stream departure process, the results obtained are not
in closed-form and the model employed is perhaps too
simplified. In our work, part of the accomplishment
is to analyze the exact composite departure statistics
of the H-MMPPs/Slotted D/1 queue. In addition, we
obtain the approximate per-stream departure statis-
tics corresponding to a specific traffic stream via a
decomposition scheme. Along with a method of mo-
ment matching, we succeed in obtaining the end-to-
end sojourn delay time of a tagged VC by matching
the corresponding per-stream output process to a two-
state MMPP at each node en route to the destina-
tion node. There are several existing moment matching
techniques, e.g., [11], [12]. In [11], Heffes and Lucan-
toni modeled a superposition of packet arrival processes
by an MMPP so that the following four statistics are
matched: mean cell arrival rate, short term and long
term variance-to-mean ratio of the number of arrivals,
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and the third moment of the number of arrivals in a pe-
riod. In this work, the following four departure statis-
tics are matched: the first moment of interdeparture
times, squared coefficient of variation of interdeparture
times, the third moment of interdeparture times, and
lag 1 covariance of interdeparture times. These four
statistics are selected for the purpose of characteriz-
ing the output process. A detailed discussion about
why these four statistics are selected is given in Sect. 4.
We approximate the per-stream output process by a
two-state MMPP if the matching scheme works; or the
per-stream output process is taken to be Poisson. The
failure of moment matching is due to that burstiness
of the (estimated) output process has been found to be
reduced to beyond the scope of MMPPs.

The rest of this paper is organized as follows. Pre-
liminaries are given in Sect. 2. In Sect. 3, we analyze the
composite and per-stream departure processes for the
H-MMPPs/Slotted D/1 queue. In Sect.4, we propose
a moment matching scheme to emulate the per-stream
output process as a two-state MMPP. Section 5 gives
detailed description of the systematic method to evalu-
ate connection-wise end-to-end performance measures.
In Sect.6, numerical examples are given. Computer
simulations are also provided to demonstrate the accu-
racy of approximation. Section 7 concludes the paper.

2. Preliminaries

Following [1], we use the H-MMPPs/Slotted D/1 queue,
a discrete-time deterministic server receiving heteroge-
neous MMPPs, to model ATM queues, e.g., a multi-
plexer or an output port of a switch. For the conve-
nience of subsequent sections, we here present nota-
tion related to the MMPP [13] and results of an H-
MMPPs/Slotted D/1 queue previously obtained in [1].

2.1 MMPP Traffic

The following discussions can be found in [13].

A two-state MMPP of type j is characterized by
the following infinitesimal generator Q; of the underly-
ing Markov chain and rate matrix A; with two Poisson

arrival rates Ai; and Aoy, i.e.,

_| oy o M 0

o= T oa= 0

Because of the property that superposition of in-
dependent MMPPs yields again an MMPP, the super-
position of r different types of two-state MMPP is also
MMPP with m = 2" possible states. The state space
of the superposed MMPP can be described using Kro-
necker product and sum of matrices. In other words,
the superposition of r independent two-state MMPPs
parameterized by the descriptor (Q;, A;), 1 < j <,
can be represented by the m-state MMPP parameter-
ized by the descriptor (Q, A) with
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Q:Q1®Q2®"'@Qr, (2)
A:A1®A2€B@Ar

where & denotes the Kronecker sum operator. The rate
matrix A is a diagonal matrix with Ay,...,\,;, on the
diagonal, i.e., A = Diag(A, Mg, ..., A\m).

For the superposed m-state MMPP (Q,A), the
steady-state probability vector @ = (m1,...,7y) of the
underlying Markov chain is given by solving the equa-
tions wQ = 0 and e = 1 where e and 0 are m x 1
column vector of all ones and 1 x m row vector of all
zeros, respectively.

Define the conditional probability P; ;(n,t) 2
Pr{N(t) = n,J(t) = j | N(0O) = 0,J(0) = i} where
N(t) and J(t) denote respectively the number of ar-
rivals during the interval (0,¢) and the state of the un-
derlying Markov process at time t. From [13], the mxm

matrix of probabilities P(n,t) 2 [P (n, )], < j<,n has
the probability generating function

P (zt) = B&t |2 <1 (3)
with

R(z) =Q+ (2 — 1)A. (4)

And the effective arrival rate of the superposed MMPP
(Q,A) is \* = L R(2) |.—1 e = wA where A = Ae.
The arrival rate from type j (1 < j <r) traffic stream
is independent of the other traffic streams and is given
by

A(j)=0&..006A; 606 ...60 (5)

where 0 is a 2x2 zero matrix. The effective arrival
rate from type j traffic stream is A\j = wA(j) where

AG) = Aj)e.

2.2 System Size of the H-MMPPs/Slotted D/1 Queue
at Slot Boundaries

The followings are taken from [1].

Let L? denote the number of cells in the system im-
mediately after the end of the nth slot, i.e., L includes
cells arrived and accommodated into the system in the
nth slot but excludes the cell departed at the end of
the nth slot. Then L8, = (L% —1)* + A, where 4,
denotes the number of cells arrive in the nth slot and
(x)* = max(x,0) (see the system time diagram shown
in Fig. 1). Let J2 denote the state of the input process

Any An Ay

—_— —

el s

I I

Fig.1 System time diagram.

time
Slots numbers

Departure
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at the end of the nth slot. And let A; 2 PG, T) (i >0)
where T denotes the duration of a slot and is used as
the time unit of the time axis. A; may be computed us-
ing the method in [13] or [14]. Then {(L:,J3) : n > 0}
forms the infinite-state Markov chain with state space
{0,1,2,...} x{1,2,...,m} and has transition probabil-
ity matrix in the following form:

B; B Bj
Ay A A, ...
U=| 0 A, A, ... (6)

where B} = A,, ¢ > 0 and 0 is an m X m zero matrix.

Let «° = (z§,x3,...,x;,...) denote the station-
ary probability vector of U, where x{ is a 1 x m vector
whose jth element 3 ; = lim,, o Pr{L; =1i,J; = j}.
x* satisfies >~ jzfe = 1 and z° = z°U or equiva-
lently,

i+l
x; =z Bi + Z x,Aiy1—,, 120 (7)

v=1

where x§ can be calculated via resorting to [15] and [16].
Then use (7), we can obtain the system size distribution
at slot boundaries.

3. Analysis of Departure Processes

3.1 Interdeparture Time Distribution of the Compos-
ite Departure Process

Following a similar philosophy done for a finite queue
accepting correlated arrivals in [9], we now derive inter-
departure time distribution for the composite output
stream of an H-MMPPs/Slotted D/1 queue. Compar-
ing with [9], we shall not only derive neater but more
results. For example, the lag 1 covariance is not treated
in [9]. Let ug be a 1 x m vector whose jth element uy, ;
is the joint stationary probability that the number of
cells in the system is k£ and the state of the underlying
Markov chain immediately after a departure is j, then
ug,; = Pr{L; =k, J; =7 | L;_; > 1}. The condition
{L?_, > 1} is to ensure that the number of cells in the
system immediately after the (n — 1)st slot is at least
one and there is a cell departing from the system at the
end of the nth slot. Rewrite uy ; as follows:

Pri{Ls_, >1,L5 =k,J: =3}

i = Pr{L;,_, =1}
k+1
S PHLy =i L=k J=f) O
=1

1— Pr{Ls_, =0}

Then from (7), (8), and the definition of wuy,
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1 arrivals (with prob. A;)
J i k +1 1 arrivals (with prob. Ag.y—;)
Arrival | [ | | | |
. I I time
Slots numbers 0 n—1 n n+l
Departure F n slots 4{
Fig.2 Illustration of the time diagram of d,(:)(n).
k+1
s
P R )
i=1 xj, — x5 By
Uy = . = —, k>0.
1—-xje 1—xje

For convenience, we number the slot that the first
cell departure occurs as the Oth slot. Let D,, de-

note the mth interdeparture time. Let d,(:)(n) be a

1 x m vector whose jth element dgg(n) is the joint
stationary probability that D; equals n (slots), the
number of cells in the system after the second de-
parture is k and the state of the underlying Markov
chain immediately after the second departure is j, i.e.,
di)(n) = Pr{Dy = n,L, = k,J5 = j}. We use the
superscript (1) to indicate a single interdeparture time.

We now derive d,(:) (n) (n > 1) as follows. First, we con-

sider d,(:) (1). Only when the number of cells left behind
the first departure at the end of the Oth slot is at least
one, say ¢ cells, the interdeparture time becomes one.
Thus, dg)(l) = Zf:ll u; Apr1-; (k> 0). We next con-
sider dg) (n) (n > 2). When the number of cells left be-
hind the first departure is zero, the interdeparture time
is then longer than one. If the first interdeparture time
is n, there must be no arrivals between the first and the
(n—2)nd slot since the first departure. And there must
be at least one cell arriving in the (n — 1)st slot. Thus,
d\(n) = upAL 2SI AiA L (k> 0, 0 > 2).
The detail of d,gl)(n) (n > 2) is illustrated in Fig. 2. Let
d™ (n) denote the probability that interdeparture time
Dy is of length n (slots), i.e., M (n) = 372, d,(:)(n)e.
Then
dV(1) =1 — uge,

(10)
d(l) (TL) = ’U,()Agiz(I — Ao)e, n > 2.

Let DM (z) denote the probability generating func-
tion of the interdeparture time distribution. Then we
have

DM (z) = id(l)(n)z"
n=1 (11)

= z(1 — upe)
+ 22uo(I — 2A) (I — Ap)e.

Let D™ denote the mth factorial moment of the
interdeparture time distribution, that is, D™ =
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;;, DM (2) |2=1. Then

DM =14 up(I — Ap) e,
D™ = mlug(I — Ag)"™ AT e, (12)

m > 2.

From (9) and (12), DM can be further reduced to
1/(1 —x§e) =1/p = 1/X* where p denotes the utiliza-
tion factor. Therefore, the mean input rate equals the
mean output rate that can also be deduced from flow
conservation. From the definition of factorial moment
of the interdeparture time, we can obtain moments of
D1 as follows:

E[Dy] = DW, E[D}] = D® + DV,

(13)
E[D}] =D® +3D® + DO

3.2 Joint Distribution of Successive Interdeparture
Times and Their Correlation for the Composite
Departure Process

As in Sect. 3.1, let uy denote a 1 x m vector whose
jth element is the joint stationary probability that the
number of cells in the system is k and the state of the
underlying Markov chain immediately after the depar-
ture is j. Also D,, denotes the mth interdeparture
time.

Let d,(f) (n1,n2) denote a 1 x m vector whose jth

element d,(f;-(nl,ng) is the joint stationary probability
of the two successive interdeparture times of length
ny; and neo, respectively, the number of cells in the
system is k£ and the state of the underlying Markov
chain at the end of the second departure point is j,

i.e., d,(f;(nl,ng) = PT{D1 = 7’L1,D2 = ng,Lle+n2 =
k,JS = j}. The derivation of d,(f)(nl,ng) for var-

yngtng
ious n1; and mg can be done for the following situa-

tions: (a) when ny > 1 and ny = 1: dgf)(nl,l) =
S A () Agyas (k> 0); (b) when ny > 1 and
na > 2: d’(f) (nl,nQ) = dél)(nl)A82—2 Zf:ll AiAkJrl,i

(k > 0). Let d®(nq,ns) 2 Y oreo d,(f)(nl,ng)e, then
we can obtain d(® (n1,ng) for each case of ny and ny as
follows:

d?(1,1) =1-—uge—uAge
for ny =no =1,

d?(ny,1) = ugAy* *(I — Ag — A Ag)e
for ny > 2 and ny =1,

d?(1,ny) = u Ap* (I — Ag)e
for ny =1 and ny > 2,

d® (ny,ny) = u0A8172A1A8271(I —Agpe
for ny > 2 and ng > 2.

(14)
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Define D, (y, z) = Yool Yot d® (ny, ng)y™ 2"
and use (14), we have

De(y, 2)
= (1 — upe — uy Age)yz + ug(I — yAg)~*
x (I —Ag— A1Ap)ey’z +uy A
x (I —2A0) (I — Ap)eyz?
+ (I — yAg) LA Ag
x (I —2A0) (I — Ao)ey?z>.

(15)

Then we can derive E[Dy_1Dy] from (15) by differen-
tiating it with respect to y and z, respectively. After
tedious manipulations, we obtain

E[Dy_1Dy)

= E[D, D]
2

= —Dc 3 =1,z=

820y W) =121 (16)
=1+ ('U,O + ulAO)(I — Ao)ile

—+ UQ(I — AQ)_Q(QI — AO)AIAO

X (I — A())_le.

The covariance of Dy_; and D can be obtained via
the following relation

Cov(Dy_1,Dy) = Cov(D1, D5)

. (17)
= E[D1Ds] — E#[D4].

From (12) and (17), we now have the departure

statistics to characterize the composite output process.

3.3 Per-Stream Departure Process of a Tagged Traffic
Stream

In order to facilitate end-to-end performance analy-
sis in ATM networks, it is necessary to figure out the
per-stream output process corresponding to a tagged
cell stream. However, it is much more difficult to ex-
tract the per-stream output process corresponding to a
tagged cell stream from the composite output process of
the H-MMPPs/Slotted D/1 queue. Instead, we propose
a heuristic decomposition scheme to obtain the approx-
imate statistics. The usefulness and effectiveness of the
decomposition scheme are checked in Sect. 6.2 through
numerical examples.

We now describe the decomposition scheme as fol-
lows. Denote the tagged MMPP by MMPP; and the
other » — 1 cross traffic streams as a whole by MMPP,.
Then the H-MMPPs arrivals are now replaced by
MMPP{+MMPP.. The decomposition scheme is to
substitute the MMPP;+MMPP, /Slotted D/1 queue by
a decomposed MMPP; /Slotted Dog/1 queue! with a
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o,

MMPP, ?

MMPP,

MMPP,

MMPP,
(a)

MMPP,

find the effective mean service time h

8.2 1W4,u,urf + Ry - W, h‘< €

q.i

MMPP, ——=

off

with €<< l,say, £= 10"
(b)

Fig.3 The decomposition scheme: (a) the undecomposed
original queueing model; (b) the replaced queueing model.

modified effective deterministic server Deg. The mod-
ification of server is to reflect the interference from
the cross cell streams. Since we still employ a deter-
ministic server, it is merely necessary to determine its
service time. The effective service time h.¢s is deter-
mined via matching the per-stream sojourn delay time
that MMPP; experiences in MMPP;+MMPP.. /Slotted
D/1 queue with that in the decomposed queue. That
is, we first calculate the per-stream sojourn delay time
Wyi + h (Wy,; can be calculated using the result in
[1]) for the MMPP; in the undecomposed queue. Then
recursively apply binary search to find an h.fs over
a feasible region such that the sojourn delay time
Woaerf + heff (Wqaers can also be calculated us-
ing the result in [1]) of the decomposed queue satisfies
(Waaerf + heps — Wqi — h| < € where € is a small
number, say € = 1078, specified for stoppage of the re-
cursion. Using the decomposition scheme, we obtain
the approximate per-stream departure statistics corre-
sponding to a tagged cell stream. This scheme is also
illustrated in Fig. 3.

In this work, we again approximate the per-stream
output process by a two-state MMPP through moment
matching technique stated latter. Of course, we can
approximate the per-stream output process by a multi-
state (higher than two) MMPP to gain more accurate
results, but this causes more complexities on moment
matching scheme.

4. Moment Matching Scheme

For more general description, we introduce the follow-
ing notation:

e T4, : the time between the ith and the (i + 1)st
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arrivals of the matched two-state MMPP parame-
terized by the descriptor (Ugm), aém), )\(lm), )\(Qm)).

e Tp,; : the time between the ith and the (i + 1)st
departures of the output process.

In order to match the composite or per-stream out-
put process as a two-state MMPP traffic source, we
need to select four statistics of the output process to
match. In this work, we select the following four statis-
tics: (a) the first moment of interdeparture times, i.e.,
E[Tp]; (b) squared coefficient of variation of inter-
departure times, i.e., ¢*(Tp;) = Var[Tp.)/E*Tp.);
(c¢) the third moment of interdeparture times, i.e.,
E [T%,i]; (d) lag 1 covariance of interdeparture times,
i.e., OOU(TD,Z',TD7Z‘+1).

We now explain why these four statistics are se-
lected. From [17]: (i) the mean E[Tp ;] is a measure of
central tendency of the random variable Tp ;; (ii) the
variance Var[Tp ;] is a measure of the dispersion of the
random variable Tp ; with respect to (w.r.t.) the mean.
Equivalently, ¢*(Tp ;) measures the dispersion; (iii) the
skewness v = E[(Tp; — E[Tp.))?)/(Var[Tp.])? is a
measure of symmetry of the random variable T ; w.r.t.
the mean; (iv) the covariance Cov(Tp,Tpi+1) is a
measure of dependence between Tp; and Tp ;1. We
note that (i)—(iii) concern the shape of the distribution
of the random variable Tp ; and (iv) describes the cor-
relation/dependence between Tp; and Tp ;+1. These
four statistics well reflect the output process.

We obtain the four statistics after tedious algebraic
manipulations as follows:

U%m) + aém)

AN 4 A

E[Ts;) = (18)
A(Tai) = 1+ 200§ (A0 - 2§V
HIPE™A 4 oA AN

x ol™ 4 {2y, (19)

EIT} ] = 3E[T3 )(o™ +o5™) /[0y A™
+ ™A+ AAT] 4 6[(0™
+ o) (™A™ + o fA™)
oA 4 oA (ol
XA oA (oA
+o™AT 4 ATA)2), (20)

fFrom flow conservation, the mean output rates
of MMPP; in both MMPP+MMPP./Slotted D/1 and
MMPP; /Slotted Degr/1 queues are equal. Therefore, the
mean interdeparture time is obtainable without approxima-
tion using this decomposition scheme.
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CO’U(TAJ‘, TA71'+1) = {V(IT‘[TAJ‘] — E2[TA,i]}
XA /2(05™ AT
+ oS AT
(21)

Therefore, we now work with the following four match-
ing equations:

U%m) + Uém)

Jém))\gm) + JYn))\ém) -

Aqg, (22)

L+ 201 ™ ™ = A5 /{[og™ A
I R
= Bd7 (23)

3C1 (0™ + ™)
aSmIAM) g m Al A (M fm
+6[(05™ + of™) (™A™ + of™A0™)
F oA 4 A (oA
F oA AN £ oA
+Ammh2y = e (24)

Dy A A™
Jém))\gm) + JYn))\;m) + )\gm)A;m)
where Ad = E[TDJ], Bd = ‘/CL7"[TD7Z‘]/E'2[TDﬂ'}7 Od =
E[Tg),iL Cd,l = E[Tl%,i]v Dy, = COU(TD,ivTD,iJrl)v
Dd,l = (VGT[TDJ'] - EQ[TD’A)/Q.
The system of equations in (22)—(25) can be solved
by the following procedure:

= Dy (25)

e Introduce another set of four variables «, 3, v, ¢
as follows:

o= aﬁm) + aém),
8= oA + oA,
= A",

§ =A™ LAl

e Rewrite (22)—(25) in terms of variables «, (3, v, 0.
After algebraic manipulations, we have the follow-
ing solution:

a = 6(¢¢—1)/[CaC(¢ +n)? —3Ca1¢(C + 1)

(26)

—6(6 +¢%)],
B = Ca, (27)
v =N,
0 =(C+¢&a

with ( = 1/Aq, n = Dq/[Aa(Dasr — Dg)], € =
[(Ba = 1)(¢ +n) + 2n]/(2¢).

IEICE TRANS. COMMUN., VOL.E83-B, NO.3 MARCH 2000

e Solving (27), we further obtain

/\(m) _ 0+ /02 — 4y

1 - )
2

/\(m) B 0 — /0% — 4y

2 - )
2

(28)
m )\(m) _
oA =T (72)’
AL A
) _ B—ard"
2 - m m)
AP A

Here we assume )\gm) > )\ém). For >‘(1m) < )\(2m)7 wo

switch the above solutions for )\gm) and )\ém).

In order to apply the above procedure to match the
output process of the H-MMPPs/Slotted D/1 queue,
we note that

E[Tp,| =TE[D],

E[T} ;] = T*E[D3],

BT} ;) = T°E[D}],

Cov(Tp.i, Tp,i+1) = T?*Cov(Dy_1, Dy).

(29)

Then using (12), (17), (27)-(29), we are able to
match the output process as a two-state MMPP
(aﬁm),aém), Aﬁm),/\g’")). Note that (28) may not have
a feasible solution set. For such case, we then approxi-
mate the output process as a Poisson process by setting
)\gm) = /\gm) = ¢, ogm) and aém) are freely specified.
The reason why we select the Poisson process is that
only its arrival rate is needed to specify and this param-
eter can be correctly obtained as mentioned earlier in
Sect. 3.3, while the other output statistics are underes-
timated (at heavy traffic load) using the decomposition
scheme (see Sect. 6.2).

5. Connection-Wise End-to-End Performance
Analysis in ATM Networks

As we mentioned earlier, each VC in ATM networks
can be regarded as a tandem configuration of H-
MMPPs/Slotted D/1 queues. Applying the results
we obtained in the previous sections, we now propose
a recursive scheme outlined in Fig.4 to evaluate the
connection-wise performance for a specific VC. This
scheme is done for the tandem queues shown in Fig. 5
in which all external arrival sources are assumed to be
two-state MMPPs and mutually independent.

When applying our heuristic recursive calculation
of the per-stream end-to-end sojourn delay time, we
must modify the sojourn delay time after the first node.
This is because the per-stream output processes of the
first and the descendent nodes possess the discrete-time
nature. Thus, if we use two-state MMPP to match the
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Fig.4 A recursive scheme applied to the end-to-end
performance analysis.

MMPP, MMPP, MMPP,

Fig.5 The tandem queueing configuration.

per-stream output process, we must modify the results
by the following interpolation scheme:

e Let the cross traffic be zero, we calculate its per-
stream mean delay time drift AW, ;0 = =W 0.
The subscript 0 denotes zero cross traffic and W ; o
is the per-stream mean delay time. Note that the
tagged traffic coming from the upstream node ex-
hibits interarrival time of multiple slots. Then per-
stream mean delay time should be 0. However,
Wy.i,0 is not equal to 0 because we employ MMPP
to match the per-stream output process. Hence we
need to set AW, ;o = —W, ;0 to compensate the
per-stream mean delay time.

e Assume that the tagged traffic source has effec-
tive load p;, we heuristically set AW, ;1-,, = 0,
i.e., the overall traffic load equals one. Under
the full load condition, the per-stream mean de-
lay time drift becomes negligible. Hence we set
AWy ii—p, = 0.

o We use AWy . = —(1 = pi — pe)We,i0/(1 — pi)
when the tagged traffic load and cross traffic load
are p; and p., respectively. Note that AW, ; ,. can
be easily obtained via internal interpolation be-
tween (0, AWq,i,O) and (l—pz, AWq,i,l—pi)- This is
why we call this scheme an “interpolation” scheme.

665

aggregated cross VCs apgregated cross VCs aggregated cross VCs.
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Fig.6 An example of two VCs sharing the same route.

Using the recursive calculation together with the inter-
polation scheme, we can obtain a more accurate esti-
mate of the per-stream sojourn delay time incurred at
the intermediate nodes.

Note that it is possible for different VCs to use
partly/entirely the same route, e.g., Fig.6. The tan-
dem configuration in Fig.5 can still be employed for
such case in an approximate manner if we neglect the
correlation between these VCs when performing the re-
cursion to obtain the connection-wise end-to-end per-
formance measures. In Sect. 6.3, we also demonstrate
the effectiveness and good accuracy of the approxima-
tion through numerical experiments (see Table 3).

6. Numerical Examples and Discussions

In this section, we investigate both the departure statis-
tics and the connection-wise end-to-end performance
through numerical experiments. Computer simulations
are provided (with 95% confidence interval) to show the
accuracy of approximation. For convenience, we use the
definition of burstiness in [2], i.e., burstiness B =Peak
rate/ Average rate in the following discussions. In
this work, burstiness B = A1(01 + 02)/(02A1 + 01A2)
for a two-state MMPP with descriptor (01,02, A1, A2)
(we assume A1 > Ag). It is easy to show that the mean
burst duration is in proportion to 1/o1 (or 1/02). In
the following examples, we set service time h =T = 1.

6.1 Composite Departure Statistics

We consider an example of r = 2 under Aj/A\5 =
1/3, i.e., we feed two sources which are both repre-
sented by two-state MMPPs into the slotted deter-
ministic server. Varying total traffic load from 0.01
to 0.9, we obtain the composite departure statistics
in Figs.7(a)-(d) for three different values of bursti-
ness (under 017 = 091 = 0.01 and 019 = 092 = 0.1).
In Fig.7(a), E[Tp] for MMPPs, Poissons, and IPPs
are all equal. This follows the flow conservation we
mentioned earlier. In Fig. 7(b), ¢*(Tp,;) decreases in a
smooth manner for MMPPs and Poissons as total traf-
fic load increases and ¢*(Tp ;) for MMPPs is slightly
above Poissons. For IPPs, ¢*(Tp ;) increases as to-
tal traffic load goes from 0.01 to 0.58 and then de-
creases. We also note that if input traffic is bursty,
then ¢?(Tp) is large (as shown in Fig.7(b): B = 1
for Poissons, B = 4/3 for MMPPs, B = 2 for IPPs).
The difference between ¢?(Tp ;) of IPPs and MMPPs
(or Poissons) is considerably large. In Fig.7(c), E[T} ]
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Fig.7 Composite departure statistics under three different sets of (A1;, A2i) (¢ = 1,2):
(a) E[Tp,i]; (b) (Tp:); (¢) E[TE ,]5(d) Cov(Tp;,Tp,i41) versus total traffic load.

decreases rather sharply for MMPPs, IPPs, and Pois-
sons. We notice that the difference between MMPPs
and Poissons is very small while the difference between
IPPs and MMPPs (or Poissons) is considerably large.
Both ¢*(Tp;) and E[T} ;] become larger if input traf-
fic gets more bursty (¢*(Tp,;) and E[T} ,] for IPPs are
the largest while for Poissons they are the smallest).
From (21), we know that both IPP and Poisson are
renewal while MMPP is not. After going through a
queue, we see from Fig. 7(d) that composite output pro-
cess becomes non-renewal (i.e., Cov(Tp;,Tp,i+1) # 0)
due to the discreteness of the queue. Cov(Tp;, Tp,it+1)
decreases as total traffic load increases (and finally be-
haves more like the deterministic process at heavy total
traffic load). Cov(Tp,;,Tp,+1) decreases almost lin-
early for Poissons as total traffic load increases and
is below that of MMPPs. Cov(Tp ;,Tp,i+1) decreases
rather sharply for IPPs and MMPPs.

6.2 Per-Stream Departure Statistics

In many situations, it is important to know the
per-stream output process corresponding to a tagged
source multiplexed with other cross traffic at the in-
put. We fix the descriptor of the tagged traffic at
(0’11, J921, )\117 )\21) = (0.01, 0.01, 0.12, 004) and apply
our proposed heuristic decomposition scheme to find
the aper-stream departure statistics corresponding to
the tagged source. In Fig. 8, we compare the per-stream
departure statistics corresponding to the tagged source
under three different interfering MMPPs represented
by (012, 022) = (0.002,0.008), (0.02,0.08), and (0.2,0.8).
We notice the followings according to simulation. First,
E[Tp ;] maintains a constant level since we feed a fixed
tagged traffic source. Second, ¢*(Tp;), E[T} ], and
Cov(Tp;,Tp i+1) almost maintain at a constant level
regardless of the variation in cross traffic except they
go up slightly when the cross traffic load becomes large.
Third, ¢*(Tp;) > 1, Cov(Tp i, Tpiv1) > 0, ie., (22)-
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Cov(Tp,i, Tp,i+1) versus cross traffic load.

(25) are satisfied. Hence we can approximate the per-
stream output process of a tagged traffic as a two-state
MMPP. Fourth, the decomposition scheme works well
except for higher utilization. It underestimates the de-
parture statistics except the mean interdeparture time
at heavy traffic load. This makes the moment matching
scheme fail to work. Since only the mean interdepar-
ture time is valid, the estimated departure process is
replaced by a Poisson process.

6.3 Per-Stream Mean End-to-End Sojourn Delay
Time

Due to the discrete nature of the H-MMPPs/Slotted
D/1 queue, we need the interpolation scheme previ-
ously described in Sect.5 to compensate the sojourn
delay time after the first node when applying the re-
cursive calculation of the per-stream end-to-end so-
journ delay time. In the following, we show how this
scheme works at the second node. Consider a two-
node tandem queueing configuration in Fig. 5 in which
each node is modeled by a deterministic server fed

by a fixed tagged MMPP at the first node described
by (0’11, 021, )\11, )\21) = (001, 0017 0.12, 004) and a
cross MMPP at the first and second node, respectively,
with traffic load varying from 0.01 to 0.9 under the
fixed ratio of A1a/A92(= 2) (here, two different sets of
cross MMPPs are arranged for comparison by setting
(012,092) at (0.2,0.8) and (0.002,0.008), respectively).
In Fig.9, we show the uncompensated sojourn delay
Wi + h and the mean delay time drift AW, ; , s the
cross traffic load varies from 0.01 to 0.9. Comparing
with the simulation result, the uncompensated sojourn
delay time indeed is overestimated except at very heavy
traffic load and the overestimated value decreases as
the (cross) traffic load increases. As shown in Fig. 9,
AWyip. < 0 and —AW,; ,. is roughly equal to the
deviation of the overestimated sojourn delay from the
simulated value so that the compensated sojourn de-
lay (Wq; +h+ AW, ; ,.) provides a more accurate re-
sult than the uncompensated one. We also note that
the compensation effect contributes more at light traf-
fic load than at heavy traffic load. This is equivalent
to say the interpolation scheme contributes little when
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traffic is heavy. One may wonder why the sojourn delay
time at heavy traffic load maintains comparatively ac-
curate? This is due to that the decomposition scheme
underestimates the per-stream departure statistics (ex-
cept the mean interdeparture time) and the interpola-
tion scheme does little help. We note that the estimated
output process well matches an MMPP when the de-
composition scheme works, while a Poisson process is
used to replace the estimated output process when mo-
ment matching fails to work. It is the use of Poisson
process which makes the estimated sojourn delay time
(at an intermediate node) remains accurate, not the
interpolation scheme. However, accuracy of the (com-
pensated) sojourn delay is better at light traffic load
than at heavy traffic load (see Table 1). The error of
approximation reaches 5-10% at high traffic load. In
the following examples, we shall show the compensated
results only.

0 sojourn delay and AW,
| \ T

T simulation

5.0 I — uncompensated
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Fig.9 Uncompensated sojourn delay Wy ; +h and mean delay
time drift AWy ; ,. at the second node.
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Now we consider a tandem queueing configuration
of four nodes (see Fig.5). Each node is modeled as an
H-MMPPs/Slotted D/1 queue fed by two sources (one
is the tagged traffic and the other denotes the cross traf-
fic). We assume all nodes are synchronized and all cross
traffic streams are identical and mutually independent.
Consider this model for the scenario of VCs in ATM
networks, with tagged information flow parameterized
by (0’11, 0921, )\117 )\21) = (001, 001, 0.12, 004) Then
we see how the per-stream mean end-to-end sojourn de-
lay time S5¢ = Z;-V::f Si.j, (IN: the number of nodes,
connection identity, and j: intermediate node identity,
S; ;i per-stream mean sojourn delay time correspond-
ing to connection i at intermediate node j) is affected
by the cross traffic in Figs. 10(a)—(b) (when cross traffic
load varies from 0.01 to 0.9). In Fig.10(a), we change
the mean burst duration of the cross MMPP by vary-
ing 012 = 092 from 0.01 to 0.1 under Aj3/A92 = 2 and
B =4/3. The result corresponding to Poissonian cross
traffic is also included. The cross MMPP causes the
per-stream mean end-to-end sojourn delay time to be-
come larger than Poisson. Cross traffic with long mean
burst duration makes the per-stream mean end-to-end
sojourn delay time large. Table 1 gives the results for
the case of 019 = 099 = 0.01 for detailed numerical
comparison. From this table, we note that the approx-
imation errors are about 0.8% (0.6%) for p. = 0.2 and
—5.4% (—5.0%) for p. = 0.8 at the second node (for
the total sojourn delay). In Fig.10(b), we change the
mean burst duration of the cross MMPP with B = 10/9
by varying (oi2,022) from (0.002,0.008) to (0.2,0.8)
under Aj2/X22 = 2. Results corresponding to Pois-
sonian and IPP (with B = 5/4) cross traffic under
(012,0922) = (0.02,0.08) are also included. We observe
that under fixed o12/092, IPP and Poisson respectively
serve as

Note that it is possible for different VCs to use
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Per-stream mean end-to-end sojourn delay time S$¢ versus cross traffic load of

a four-node tandem configuration accepting two sources: (a) cross traffic with 12 = 022;

(b) cross traffic with o12/022 = 0.25.
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Table 1  Delay at each node of the four-node tandem queues in Fig. 5.
| Pe | || Node 1 | Node 2 | Node 3 | Node 4 | Total |
0.2 Simulation 1.72440.2% 1.276+0.2% 1.2734+0.5% 1.27040.4% 5.5444+0.2%
' Analysis 1.7219 1.2860 1.2853 1.2847 5.5779
0.4 Simulation 2.07940.3% 1.743+0.8% 1.728+0.6% 1.718+0.5% 7.26940.3%
’ Analysis 2.0746 1.7559 1.7521 1.7486 7.3312
0.6 Simulation 3.552+1.5% 3.3014+2.0% 3.248+1.7% 3.2044+1.0% 13.3054+0.9%
' Analysis 3.5062 3.2873 3.0986 3.0986 12.9908
0.8 Simulation 24.946+£7.0% | 24.316+£5.3% | 24.648+5.4% | 24.095+£7.1% | 98.005+4.2%
' Analysis 24.1057 22.9920 22.9920 22.9920 93.0816
Table 2 Traffic parameters employed in the example of Fig. 6.
| || Node 1 | Node 2 | Node 3 | Node 4

VCi (011,021, A11, A21)

(0.01,0.01,0.12,0.04)

VCs (012,022, A12, A22)

(0.01,0.01,0.10,0.06)

cross VCs (01¢,02¢, AMe, A2c)

I 2
(0.01,0.01, %< Zbe)

I 2
(0.01,0.01, %< Zbe)

(0.01,0.01, %< Z£c

3

)

(0.01,0.01, %2

3

)

2
%)

Table 3 Delay at each node of the four-node tandem queues in Fig. 6.
e | ] Node 1 | Node 2 [ Node 3 [ Node 4 | Total ]

v, | Simulation 1.821£0.2% | 1.325%0.3% 1.317£0.3% 1.314£0.4% | 5.776£0.2%

0.2 Analysis 1.8181 1.4296 1.4277 1.4266 6.1020
: vo Simulation T.800£0.1% | 1.314%0.3% T.308£0.2% T30610.2% | 5.7290%0.1%

2 Analysis 1.7997 1.4179 1.4142 1.4140 6.0459
vo Simulation 2.318%0.4% | 1.931£0.5% 1.907£0.5% 1.900£0.6% | 8.055£0.4%

04 1 Analysis 2.3178 2.0395 2.0321 1.9819 8.3714
: Vo Simulation 2.278%0.4% | 1.897L0.6% T.876£0.3% T.874£0.5% | 7.925%0.2%

2 Analysis 2.2732 1.9932 1.9917 1.9819 8.2400
Vo, | Simulation 5.320L2.2% | 4.99012.0% | 4.896E1.0% | 4.86L2.0%5 | 20.071E£0.7%

06 Analysis 5.2587 4.6809 4.6809 4.6809 19.3015
vo Simulation 5118E1.5% | 4.832L1.8% | 4.7370E11.8% | 4.734E1.8% | 19.422%0.8%

2 Analysis 5.0606 4.6809 4.6809 4.6809 19.1034
vo Simulation T01.6£15% | 96.9316.9% 88.28116% 91.05E12% 377.856.2%

08 1 Analysis 93.293 90.295 90.295 90.295 364.18
vo Simulation 99.43E13% | 94.090%6.4% 87.25F13% 93.55E£18% 375.2%5.3%

2 Analysis 92.663 90.295 90.295 90.295 363.55
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Computation time: (a) for the decomposition scheme; (b) for the calculation

of a four-node tandem queueing configuration.

partly/entirely the same route as mentioned earlier.
Hence the tandem configuration in Fig.5 can be em-
ployed for such case in an approximate manner if we
may neglect the correlation between these VCs when
performing the recursion to obtain the connection-wise
end-to-end performance measures. We now consider a
case in Fig.6 where two VCs share entirely the same
route and all other cross VCs are assumed to be still
identical and mutually independent. For this configu-
ration with the traffic parameter sets in Table 2, we

obtain delays along both routes VC; and VC; in Ta-
ble 3. Table 3 says that the approximation is still good
since there is merely about 8.6% error for the worst
case.

The above examples have demonstrated the ac-
curacy of our proposed method in conducting end-to-
end performance analysis. Let us further examine the
efficiency regarding the computation time consumed.
The following examples are run on a Sun SPARC-20E
workstation using Matlab Ver.5.1. Shown in Fig. 11(a)
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is the CPU time used to find the value of hefr un-
der the following parameters: the tagged traffic fixed
at (0'11, 021, )\11, )\21) = (001, 001, 012, 004), at ev-
ery node the cross traffic fixed only for (o12,0922) =
(0.02,0.08) but the traffic load varies from 0.01 to
0.9 under three different traffic sources, i.e., MMPP
()\21/)\22 = 2), PP ()\12 7é 07 )\22 = 0)7 and Pois-
son (A2 = A22). Note that the above traffic arrange-
ment has been employed in previous examples (i.e., in
Fig.10). The decomposition scheme needs about 4-
10 seconds when the traffic load is lower than 0.7 and
up to 10-50 seconds when the traffic load goes beyond
0.7. Using the above traffic arrangement, Fig.11(b)
shows the CPU time consumed for a four-node end-
to-end calculation. The CPU time falls in the range
12-30 seconds when the traffic load varies from 0.01 to
0.7. At extremely heavy traffic load, the calculation
even consumes more than one minute. This seems un-
satisfactory for practical CAC need. However, if faster
processors such as Sun UltraSPARC are used, the com-
putation time may be reduced by a factor (at least five
to ten) to make the proposed method usable on-line.

7. Conclusion

In this paper, we have investigated the composite out-
put process of the H-MMPPs/Slotted D/1 queueing
system and proposed a simple heuristic decomposition
scheme to obtain the per-stream output process corre-
sponding to a tagged traffic stream. This decomposi-
tion scheme can also be used in other queueing systems.
A moment matching scheme used to emulate the output
process as a two-state MMPP is also provided. These
results can be easily extended to obtain the composite
end-to-end sojourn delay time or per-stream end-to-end
sojourn delay time.

Our results enable us to conduct end-to-end per-
formance analysis for each VC in ATM networks. It can
be of course extended to evaluate the overall network
performance since a network consists of a collection of
individual VCs. In other words, we offer a powerful
analytical method to call admission control, congestion
control and routing algorithms in ATM networks.
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