Chapter 3 Topics

- Introduction
- The General Problem of Describing Syntax
- Formal Methods of Describing Syntax
- Describing the Meanings of Programs: Dynamic Semantics
Introduction

- **Syntax**: the form or structure of the expressions, statements, and program units
- **Semantics**: the meaning of the expressions, statements, and program units
- **Syntax and semantics provide a language’s definition**
 - Users of a language definition
 - Other language designers
 - Implementers
 - Programmers (the users of the language)
The General Problem of Describing Syntax: Terminology

- A *sentence* is a string of characters over some alphabet
- A *language* is a set of sentences
- A *lexeme* is the lowest level syntactic unit of a language (e.g., *, sum, begin)
- A *token* is a category of lexemes (e.g., identifier)
Formal Definition of Languages

- **Recognizers**
 - A recognition device reads input strings of the language and decides whether the input strings belong to the language
 - Example: syntax analysis part of a compiler
 - Detailed discussion in Chapter 4

- **Generators**
 - A device that generates sentences of a language
 - One can determine if the syntax of a particular sentence is correct by comparing it to the structure of the generator
Formal Methods of Describing Syntax

- **Backus–Naur Form and Context–Free Grammars**
 - Most widely known method for describing programming language syntax

- **Extended BNF**
 - Improves readability and writability of BNF

- **Grammars and Recognizers**
BNF and Context–Free Grammars

- **Context–Free Grammars**
 - Developed by Noam Chomsky in the mid–1950s
 - Language generators, meant to describe the syntax of natural languages
 - Define a class of languages called context–free languages

\[
N \rightarrow t
\]

Non–terminals can be rewritten without regard to the context
Backus–Naur Form (BNF)

• Backus–Naur Form (1959)
 – Invented by John Backus to describe Algol 58
 – BNF is equivalent to context–free grammars
 – BNF is a *metalanguage* used to describe another language
 – In BNF, abstractions are used to represent classes of syntactic structures—–they act like syntactic variables (also called *nonterminal symbols*)
BNF Fundamentals

- Non-terminals: BNF abstractions
- Terminals: lexemes and tokens
- Grammar: a collection of rules
 - Examples of BNF rules:

 \[
 \begin{align*}
 \langle \text{ident_list} \rangle & \rightarrow \text{identifier} \mid \text{identifier, } \langle \text{ident_list} \rangle \\
 \langle \text{if_stmt} \rangle & \rightarrow \textbf{if} \ \langle \text{logic_expr} \rangle \ \textbf{then} \ \langle \text{stmt} \rangle
 \end{align*}
 \]
BNF Rules

- A rule has a left-hand side (LHS) and a right-hand side (RHS), and consists of *terminal* and *nonterminal* symbols
- A grammar is a finite nonempty set of rules
- An abstraction (or nonterminal symbol) can have more than one RHS

\[
\begin{align*}
\texttt{<stmt>} & \rightarrow \texttt{<single_stmt>} \\
& \quad | \texttt{begin <stmt_list> end}
\end{align*}
\]
Describing Lists

- Syntactic lists are described using recursion
 \[
 \text{ident_list} \rightarrow \text{ident} \quad \mid \quad \text{ident, ident_list}
 \]

- A derivation is a repeated application of rules, starting with the start symbol and ending with a sentence (all terminal symbols)
An Example Grammar

\[
\begin{align*}
<\text{program}> & \rightarrow <\text{stmts}> \\
<\text{stmts}> & \rightarrow <\text{stmt}> \mid <\text{stmt}> ; <\text{stmts}> \\
<\text{stmt}> & \rightarrow <\var> = <\text{expr}> \\
<\var> & \rightarrow \text{a} \mid \text{b} \mid \text{c} \mid \text{d} \\
<\text{expr}> & \rightarrow <\text{term}> + <\text{term}> \mid <\text{term}> - <\text{term}> \\
<\text{term}> & \rightarrow <\var> \mid \text{const}
\end{align*}
\]
An Example Derivation

\[
\begin{align*}
<\text{program}> & \Rightarrow <\text{stmts}> \Rightarrow <\text{stmt}> \\
& \Rightarrow <\text{var}> = <\text{expr}> \\
& \Rightarrow a = <\text{expr}> \\
& \Rightarrow a = <\text{term}> + <\text{term}> \\
& \Rightarrow a = <\text{var}> + <\text{term}> \\
& \Rightarrow a = b + <\text{term}> \\
& \Rightarrow a = b + \text{const}
\end{align*}
\]
Derivation

• Every string of symbols in the derivation is a sentential form
• A sentence is a sentential form that has only terminal symbols
• A leftmost derivation is one in which the leftmost nonterminal in each sentential form is the one that is expanded
• A derivation may be neither leftmost nor rightmost
Parse Tree

- A hierarchical representation of a derivation
Ambiguity in Grammars

- A grammar is *ambiguous* if and only if it generates a sentential form that has two or more distinct parse trees.
An Ambiguous Expression Grammar

\[
\begin{align*}
\text{<expr>} & \rightarrow \text{<expr>} \text{ <op>} \text{ <expr>} \mid \text{ const} \\
\text{<op>} & \rightarrow / \mid -
\end{align*}
\]
An Unambiguous Expression Grammar

- If we use the parse tree to indicate precedence levels of the operators, we cannot have ambiguity

\[
<\text{expr}> \rightarrow <\text{expr}> - <\text{term}> \mid <\text{term}>
\]

\[
<\text{term}> \rightarrow <\text{term}> / \text{const} \mid \text{const}
\]
Associativity of Operators

- Operator associativity can also be indicated by a grammar

\[
\begin{align*}
\text{<expr>} & \rightarrow \text{<expr>} + \text{<expr>} \mid \text{const} \quad \text{(ambiguous)} \\
\text{<expr>} & \rightarrow \text{<expr>} + \text{const} \quad \text{const} \quad \text{(unambiguous)}
\end{align*}
\]
Extended BNF

- Optional parts are placed in brackets []
 \[<proc_call> \rightarrow \text{ident} \ [(<expr_list>)] \]

- Alternative parts of RHSs are placed inside parentheses and separated via vertical bars
 \[<term> \rightarrow <term> (+ | -) \text{ const} \]

- Repetitions (0 or more) are placed inside braces { }
 \[<\text{id}nt> \rightarrow \text{letter} \ \{ \text{letter} | \text{digit} \} \]
BNF and EBNF

• BNF

\[<\text{expr}> \rightarrow <\text{expr}> + <\text{term}> \]
\[\quad \mid <\text{expr}> - <\text{term}> \]
\[\quad \mid <\text{term}> \]

\[<\text{term}> \rightarrow <\text{term}> * <\text{factor}> \]
\[\quad \mid <\text{term}> / <\text{factor}> \]
\[\quad \mid <\text{factor}> \]

• EBNF

\[<\text{expr}> \rightarrow <\text{term}> \{(+ | -) <\text{term}>\} \]
\[<\text{term}> \rightarrow <\text{factor}> \{(* | /) <\text{factor}>\} \]
Semantics

• There is no single widely acceptable notation or formalism for describing semantics

• Operational Semantics
 – Describe the meaning of a program by executing its statements on a machine, either simulated or actual. The change in the state of the machine (memory, registers, etc.) defines the meaning of the statement
Operational Semantics

• To use operational semantics for a high-level language, a virtual machine is needed
• A *hardware* pure interpreter would be too expensive
• A *software* pure interpreter also has problems
 – The detailed characteristics of the particular computer would make actions difficult to understand
 – Such a semantic definition would be machine-dependent
Operational Semantics (continued)

• A better alternative: A complete computer simulation
• The process:
 – Build a translator (translates source code to the machine code of an idealized computer)
 – Build a simulator for the idealized computer
• Evaluation of operational semantics:
 – Good if used informally (language manuals, etc.)
 – Extremely complex if used formally (e.g., VDL), it was used for describing semantics of PL/I.

Vienna Definition Language
Axiomatic Semantics

• Based on formal logic (predicate calculus)
• Original purpose: formal program verification
• Axioms or inference rules are defined for each statement type in the language (to allow transformations of expressions to other expressions)
• The expressions are called *assertions*
Axiomatic Semantics (continued)

- An assertion before a statement (a preconditions) states the relationships and constraints among variables that are true at that point in execution.
- An assertion following a statement is a postconditions.
- A weakest precondition is the least restrictive precondition that will guarantee the postcondition.
Axiomatic Semantics Form

• Pre-, post form: \{P\} statement \{Q\}

• An example
 – \(a = b + 1\) \{a > 1\}
 – One possible precondition: \{b > 10\}
 – Weakest precondition: \{b > 0\}
Program Proof Process

- The postcondition for the entire program is the desired result
 - Work back through the program to the first statement. If the precondition on the first statement is the same as the program specification, the program is correct.
Axiomatic Semantics: Axioms

- An axiom for assignment statements
 \[(x = E): \{Q_{x\to E}\} x = E \{Q\}\]
 \[\text{P is computed as Q with all } x \text{ replaced by } E\]

- The Rule of Consequence:
 \[\{P\} S \{Q\}, P' \Rightarrow P, Q \Rightarrow Q' \]
 \[\{P'\} S \{Q'\}\]
 \[
 \begin{align*}
 \{x > 3\} x = x - 3 \{x > 0\}, (x > 5) \Rightarrow (x > 3), (x > 0) \Rightarrow (x > -10) \\
 \{x > 5\} x = x - 3 \{x > -10\}
 \end{align*}
 \]
 \[\text{P can always be strengthened and Q can be weakened}\]
Axiomatic Semantics: Axioms

- An inference rule for sequences
 \[
 \{P_1\} S_1 \{P_2\}
 \{P_2\} S_2 \{P_3\}
 \]

 \[
 \frac{\{P_1\} S_1 \{P_2\}, \{P_2\} S_2 \{P_3\}}{\{P_1\} S_1; S_2 \{P_3\}}
 \]
• An inference rule for logical pretest loops

\{P\} \text{ while } B \text{ do } S \text{ end } \{Q\}

\begin{align*}
\{I \text{ and } B\} & \quad S \quad \{I\} \\
\{I\} & \quad \text{while } B \text{ do } S \quad \{I \text{ and } (\text{not } B)\}
\end{align*}

where I is the loop invariant (the inductive hypothesis)
Axiomatic Semantics: Axioms

- Characteristics of the loop invariant: I must meet the following conditions:
 - $P \Rightarrow I$ -- the loop invariant must be true initially
 - $\{I\} \ B \ {I}$ -- evaluation of the Boolean must not change the validity of I
 - $\{I \text{ and } B\} \ S \ {I}$ -- I is not changed by executing the body of the loop
 - $\{I \text{ and } \neg B\} \Rightarrow Q$ -- if I is true and B is false, is implied
 - The loop terminates
Loop Invariant

• The loop invariant I is a weakened version of the loop postcondition, and it is also a precondition.
• I must be weak enough to be satisfied prior to the beginning of the loop, but when combined with the loop exit condition, it must be strong enough to force the truth of the postcondition
Evaluation of Axiomatic Semantics

• Developing axioms or inference rules for all of the statements in a language is difficult
• It is a good tool for correctness proofs, and an excellent framework for reasoning about programs, but it is not as useful for language users and compiler writers
• Its usefulness in describing the meaning of a programming language is limited for language users or compiler writers
Denotational Semantics

- Based on recursive function theory
- The most abstract semantics description method
- Originally developed by Scott and Strachey (1970)
• The process of building a denotational specification for a language Define a mathematical object for each language entity
 – Define a function that maps instances of the language entities onto instances of the corresponding mathematical objects
• The meaning of language constructs are defined by only the values of the program's variables
Denotation Semantics vs Operational Semantics

- In operational semantics, the state changes are defined by coded algorithms.
- In denotational semantics, the state changes are defined by rigorous mathematical functions.
• The state of a program is the values of all its current variables
 \[s = \{<i_1, v_1>, <i_2, v_2>, \ldots, <i_n, v_n>\} \]

• Let \texttt{VARMAP} be a function that, when given a variable name and a state, returns the current value of the variable
 \[\texttt{VARMAP}(i_j, s) = v_j \]
Decimal Numbers

\[
<\text{dec_num}> \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9
\]

\[
<\text{dec_num}> (0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9)
\]

\[
M_{\text{dec}} (\text{'0'}) = 0, \quad M_{\text{dec}} (\text{'1'}) = 1, \quad \ldots, \quad M_{\text{dec}} (\text{'9'}) = 9
\]

\[
M_{\text{dec}} (<\text{dec_num}> \text{'0'}) = 10 \times M_{\text{dec}} (<\text{dec_num}>)
\]

\[
M_{\text{dec}} (<\text{dec_num}> \text{'1'}) = 10 \times M_{\text{dec}} (<\text{dec_num}>) + 1
\]

\[
\ldots
\]

\[
M_{\text{dec}} (<\text{dec_num}> \text{'9'}) = 10 \times M_{\text{dec}} (<\text{dec_num}>) + 9
\]
Expressions

• Map expressions onto \(\mathbb{Z} \cup \{\text{error}\} \)
• We assume expressions are decimal numbers, variables, or binary expressions having one arithmetic operator and two operands, each of which can be an expression
3.5 Semantics (cont.)

\[M_e(\text{expr}, s) \Delta= \]
\[
\text{case } \text{expr} \text{ of} \\
\quad \langle \text{dec_num} \rangle \Rightarrow M_{\text{dec}}(\langle \text{dec_num} \rangle, s) \\
\quad \langle \text{var} \rangle \Rightarrow \\
\quad \quad \text{if } \text{VARMAP}(\langle \text{var} \rangle, s) == \text{undefined} \\
\quad \quad \quad \text{then error} \\
\quad \quad \text{else } \text{VARMAP}(\langle \text{var} \rangle, s) \\
\quad \langle \text{binary_expr} \rangle \Rightarrow \\
\quad \quad \text{if } (M_e(\langle \text{binary_expr} \rangle.\langle \text{left_expr} \rangle, s) == \text{undefined} \)
\quad \quad \quad \text{OR } M_e(\langle \text{binary_expr} \rangle.\langle \text{right_expr} \rangle, s) = \\
\quad \quad \quad \quad \text{undefined) \\
\quad \quad \text{then error} \\
\quad \text{else} \\
\quad \quad \text{if } (\langle \text{binary_expr} \rangle.\langle \text{operator} \rangle == \text{‘+’}) \text{ then} \\
\quad \quad \quad M_e(\langle \text{binary_expr} \rangle.\langle \text{left_expr} \rangle, s) + \\
\quad \quad \quad M_e(\langle \text{binary_expr} \rangle.\langle \text{right_expr} \rangle, s) \\
\quad \text{else } M_e(\langle \text{binary_expr} \rangle.\langle \text{left_expr} \rangle, s) \times \\
\quad \quad M_e(\langle \text{binary_expr} \rangle.\langle \text{right_expr} \rangle, s) \\
\quad \quad \quad \ldots
\]
Assignment Statements

• Maps state sets to state sets

\[
\text{Ma}(x := E, s) \triangleq \\
\text{if } \text{Me}(E, s) = \text{error} \\
\text{then error} \\
\text{else } s' = \\
\{<i'_1, v'_1>, <i'_2, v'_2>, ..., <i'_n, v'_n>\}, \\
\text{where for } j = 1, 2, ..., n, \\
v'_j = \text{VARMAP}(i_j, s) \text{ if } i_j \neq x \\
= \text{Me}(E, s) \text{ if } i_j = x
\]
Logical Pretest Loops

• Maps state sets to state sets

\[M_1(\text{while } B \text{ do } L, s) \Delta = \]
\[\begin{align*}
 & \text{if } M_b(B, s) = \text{undef} \\
 & \quad \text{then error} \\
 & \quad \text{else if } M_b(B, s) = \text{false} \\
 & \quad \quad \text{then } s \\
 & \quad \text{else if } M_{s1}(L, s) = \text{error} \\
 & \quad \quad \text{then error} \\
 & \quad \quad \text{else } M_1(\text{while } B \text{ do } L, M_{s1}(L, s))
\end{align*} \]
Loop Meaning

- The meaning of the loop is the value of the program variables after the statements in the loop have been executed the prescribed number of times, assuming there have been no errors.
- In essence, the loop has been converted from iteration to recursion, where the recursive control is mathematically defined by other recursive state mapping functions.
- Recursion, when compared to iteration, is easier to describe with mathematical rigor.
Evaluation of Denotational Semantics

- Can be used to prove the correctness of programs
- Provides a rigorous way to think about programs
- Can be an aid to language design
- Has been used in compiler generation systems
- Because of its complexity, they are of little use to language users
Summary

• BNF and context-free grammars are equivalent meta-languages
 – Well-suited for describing the syntax of programming languages
• Three primary methods of semantics description
 – Operation, axiomatic, denotational