
MODELS FOR STUDYING CONCURRENCY CONTROL PERFORMANCE
ALTERNATIk ES AND IMPLICATIONS

AT&T Bell LaboratorIes
Murray Hill NJ 07974

Michael J Care\
Mvon L.n n\

Computer Sciences Department
Unnerslh of Wlsconsm
Madison WI 53706

.4BSTRACT

A number of recent studies hale exammed the performance
of concurrent\ control algorithms for database manage-
ment s\stems The results reported to date rather than
bemg defimove ha\e tended to be contradIctor> In 011s
paper rather than presenting “yet another algorithm per-
formance stud)” we crlbcally mvesngate the assumwons
made m the models used m past studies and their Imphca-
tlons We employ a “complete” model of a database
emlronment to study the relatn~e performance of three dlf-
ferent approaches to the concurrency control problem
under a \arleb of modehng assumptions We shon how
differences m the underlymg assumpnons explam the seem-
mgl\ contradlctorq performance results We also examine
how reahsnc the various assumptions would be for “real”
database sqqtems

1 IWRODUCTION
Research m the area of concurrency control for data-

base systems has led to the development of many con-
currenck control algorithms Most of these algorithms are
based on one of three basrc mechamsms lodmg [Mena
Rose78 Graj79 Lmd79 Ston79] rrmestamps [Reed78
Thorn79 BernSOb] and oprnrsru concurrency control
(also called commit-hme \ahdabon or certdicanon)
IBada79 Casa79 Kung81 Cer182] Bernstem and Good-
man [Bern81 Bern821 sur\ey manv of the algorithms that
hate been developed and describe how nea algorithms ma)
be created b\ combmmg the three basic mechanisms

This research waz parnaIl\ supported bv the Wsconsm Alumm
Research Foundanon Evanonal Science Foundanon Grant Number
DCR-84028 18 and an IBM Facultv Development Award

Pertmwon to copy wthout fee all or part of this matenal IS granted
prowded that the copies are not made or dlstrlbuted for direct
commercial advantage, the ACM copyrIght notxe and the title of the
pubhcatlon and its date appear, and notIce IS gwen that copymg IS by
pern-uwon of the Assoclatlon for Computmg Machmery To copy
otherwse, or to repubhsh, reqmres a fee and/or specific permwon

0 1985 ACM o-89791-160-l/85/005/0108 $00 75

Gl\en the e\er-growmg number of atallable con-
current) control algorithms conslderable research has
recently been deleted to elaluatmg the performance of the
barlous concurrency control algorithms The beha\lor of
lockmg has been mbesngated usmg both slmulatlon
[Spit76 Rles77 Rles79a Rles79b Balt82 Lm82bl and
analyacal models [Iran79 Pot180 Gracll Good83
Reut83 Thorn83 Tal84a Ta\84b] A quahtatne stud)
that chstussed performance ISsues for a number of dlstrl-
buted locking and omestamp algorithms was presented m
(BernSOa] and an emplrrcal comparison of ceveral con-
currency control schemes uas gl\en m I Pem83]
Recentlq the performance of different concurrency control
mechamsms habe been compared m a number of slmula-
non studies The performance of lockmg was compared
with the performance of basrc nmestamp ordermg m
IGall and with basic and mulhverslon nmestamp order-
mg m [Lm83] The performance of several alternanves for
handlmg deadloch m lockl?g algorithms was studled m
IBaIt Results of experiments comparmg lockmg to the
optlmlsnc method appeared m IRob182a Rob182b] and the
performance of several carlants of lockmg basic timestamp
ordermg and the opnmlstuz method were compared m
ICare83a Care841 Fmallq the performance of several
Integrated concurrent) control and recover) algorithms
were evaluated m IAgra83a Agra83b]

These performance studies are mformanbe but the
results that hale emerged Instead of bemg definmve have
been very contradIctor\ For example studies b\ Care\
and Stonebraher ICare and Agrawal and DeWm
IAgra83al suggest that an algorithm that uses blockmg
Instead of restarts IS preferable trom a performance
vlewpomt but studies bl Ta) ITak84a Ta\84b] and Baiter
et al IBait suggest that restarts lead to better perfor-
mance than blochmg Optimlsuc methods outperformed
lockmg m IFran whereac the opposite results were
reported in IAgra83b Care83aJ Results reported m
IGall82j regardmg lockmg versus basic umestamp ordermg
contradict those of ILm83] ’

’ Tins last example ulll not be addressed further m ttw paper

Each of the previous studies employed a different per-
formance model and several of the studies were based on
assumptions that have no clear phvslcal meanmg In this

paper instead of presentmg “bet another performance
study * we address the assumphons made m the models
used m past studies and their Implications We begm by
estabhshmg a framework based on a complete and (we
believe) “reahsnc” model of a database management sys-
tem Our model captures all the main elements of a data-
base environment mcludmg both users (I e termmals the
source of transacbons) and phwcal resources for stormg
and processing the data (I e disks and CPUs) m addition
to the usual model components (workload and database
characteristics) Based on this framework we show how
differences m assumpnons explam the apparently contradlc-
tory performance results from the previous stu&es We
also examine what assumptions are reasonable for real sys-
tems and how more reahsbc assumpuons would have
altered the conclusions of several of the earlier studies

In parncular we cribcally examine the common
assumpuon of rnjntte resources A number of anal?tlcal
studies (for example IFran Tal84a Ta784b]) and
simulabon studies (for example (Lm82b Lm83j) compare
concurrency control algorithms under the assumption that
transactions progress at a rate independent of the number
of concurrent transactions In other words theq proceed
m parallel rather than m an interleaved manner ThlS IS

only reallq possible m a system with enough resources so
that transachons neter have to wsut for CPU or l/O Service
- hence our choice of the phrase “mfinrte resources”
We will m\esugate thus assumption by performing studies
with trul\ infinite resources with multiple CPU-I/O de\-
ices and wrth transactlons that thmk while holdmg locks
The infinite resource case represents an “Ideal” system the
mulhple CPU-I/O device case models a class of mulhpro-
cessor database machines and having transactions thmk
while executmg models an mteracuve workload

We examine three concurrency control algorithms in
this study two lockmg algorithms and an opbmlsbc algo-
nthm, which differ as to when and how they detect and
resolve confhcts Section 2 describes our choice of con-
currency control algorithms We use a simulator based on
a closed queuing model of a smgle-site database system for
our performance studies The structure and characteristics
of thus simulator are described in Section 3 Section 4
presents the performance experiments and our results In
Section 5 we summarize the mam conclusions of our study

2 CONCURRENCY CONTROL STRATEGIES

A transaction T IS a sequence of acuons (al a2
an} where a, IS either read or write Given a concurrent
execution of transactions action a, of transacnon T, and
acnon a of T confrrcr If they access the same obJect and
either (I 4 a, Is’read and a IS write or (II) a IS write and a
IS read or write The Jarrous concurren& control algo!
rlthms basIcall> differ m the time when the\ drrect CO~I~IC?S
and the wa\ that they resolve conjrcts IBern 1 For thus
studc we have chosen to examme three concurrency control

algorithms that represent extremes m conflict detection and
resolution

BlocXq Transacbons set read locks on objects that
the\ read and these locks are later upgraded to write locks
for objects which they also write If a loch request IS

demed the requestmg transaction IS blocked A waits-for
graph of transacnons IS maintained]Gra!79] and deadlock
detecnon IS performed each time a transaction blocks If a
deadlock IS discovered the youngest transacuon m the
deadlock cycle IS chosen as the vlcbm and restarted
Dynamic two-phase lockmg]Gray79] IS an example of this

strategy
Immedrate-Restart As m the case of blockmg transac-

tions read-lock the ObJects that they read and they later
upgrade these locks to write locks for ob’ects which they
also write However If a lock request IS denied the
requesbng transachon IS aborted and restarted after a restart
delay The delay period which should be on the order of
the expected response bme of a transactjon prevents the
same conflict from re-occurring repeatedly A concurrency
control strategy slmllar to this was considered m]Tay84a
Tay84b J

Opttmcstx Transactions are allowed to execute unhm-
dered and are validated only after they have reached their
commit points A transachon is restarted at its commit
point If It finds that any obJect that It read has been written
by another bansaction which committed during its hfetlme
The opbmisbc method proposed bq hung and Robinson
]Kung8l] IS based on this strateg\

These algornhms represent two extremes with respect
to when confhcts are detected The blocking and
Immediate-restart algorithms are based on dynamic lockmg
so confhcts are detected as the) occur The opnmlsnc algo-
rithm on the other hand does not detect conflicts untd
transacuon commit time The three algorithms also
represent two different extremes with respect to conflict
resolution The blochmg algorithm blocks transacbons to
resolve conflrcts restarting them onlc when necessar?
because of a deadlock The Immediate-restart and opumis-
tic algorrthms always use restarts to resohe conflicts

One final note m regard to the three algorithms In
the Immediate-restart algorithm a restarted transacnon
must be delayed for some time to allow the conflicting tran-
sacDon to complete otherwise the same lock conflict will
occur repeatedl) For the ophmlstic algorithm It IS
unnecessary to delal the restarted transacbon as anv
detected conflict IS with an already commmed transaction
A restart delah IS also unnecessary for the blocking algo-
rithm as the same deadlock cannot arise repeatedly

3 SlMULATiON MODEL
Central to our simulator for studying concurrency

control algorithm performance IS the closed queumg model
of a single-site database system shown m Figure I This
model IS an extended version of the model used m
[Care83a Care841 \shlch m turn had its origins in the
model of]Rles77 Rles79a Rles79b] There are a fixed
number of tetmmals from which transactions originate

109

TERMINALS

l

J

1:

Figure I Log& Queumg Model

There IS a hmlt to the number of transactions allowed to be
achve at an) ome m the system the mulhprogrammmg
level mpl A transacnon IS consldered active If It IS either
recelvmg service or watmg for service mslde the database
system When a new transaction orrgmates If the system
already has a full set of active transachons It enters the
readv queue where It waits for a currently active transaction
to complete or abort (transacbons m the ready queue are
not considered acttve) The transaction then enters the cc
queue (concurrency control queue) and makes the first of
its concurrency con@01 requests If the concurrency con-
trol request IS granted the transacbon proceeds to the
objecf queue and accesses its first ObJect ff more than one
object IS to be accessed prior to the next concurrency con-
trol request the transacbon ~111 cycle through this queue
several hmes When the next concurrency control request
IS required the transaction re-enters the concurrency con-
trol queue and makes the request It IS assumed for model-
mg convemence that a transacbon performs all of Its reads
before performmg any writes In one of the performance
studies later In the paper we examme the performance of
concurrency control algorithms under Interactive work-
loads The thmb path m the model provides an optlonal
random delay that follows object accesses for this purpose

2 The simulator mamtams backup copies of transactIon read and
write sets

More ~111 be sad about modeling Interactive transacuons
short11

If the result of a concurrency control request IS that
the transacnon must bloch It enters the blocAed queue until
It 1s once agam able to proceed If a request leads to a
declslon to restart the transaction II goes to the back of the
ready queue posslblj after a randomly determined restart
delay period of mean reszartde/o\ (as In the Immediate-
restart algorithm) It then begins mahmg all of the same
concurrency control requests and obJect accesses over
agam ’ Eventuallv the transaction ma) complete and the
concurrency control algorithm may choose to commit the
transactlon If the transactton IS read-onl) It IS finished
If It has wrltten one or more objects during its execution
however It first enters the update queue and writes its
deferred updates mto the database Deferred updates are
assumed here because our slmulatlon framework IS

Intended to support an\ concurrency control algorithm -
all algorithms operate correctly with deferred updates but
not all algorithms work with recovery schemes that do m-
place updates

To further Illustrate how transachons flow through the
model we brlefly describe how the locking algorithms and
the opfimlsbc algorithm are modeled For lockmg each
concurrency control request corresponds to a lock request
for an ObJect and these requests alternate with ObJect
accesses Locks are released together at end-of-transaction
(after the deferred updates have been performed) Walt
queues for locks and a watts-for graph are mamtamed by
an algorithm--specific pornon of the simulator For optlmls-
tic concurrency control the first concurrency control
request IS granted lmmedlately (I e it IS a “no-op”) all
ObJect accesses are then performed with no intervening
concurrency control requests Only after the last object
access IS fimshed does a transachon return to the
concurrency control queue m the optimlsbc case at which
nme Its vahdatlon test IS performed (followed If successful
by its deferred updates)

Underlymg the loglcal model of Figure 1 are two phy-
slcal resources the CPU and the I/O (I e disk) resources
Associated with the concurrency control object access and
deferred update serllces m Figure I are some use of one or
both of these two resources The amounts of CPU and I/O
bme per loglcal service are specified as slmulauon parame-
ters The phjslcal queumg model IS depjcted m Figure 2
and Table I summarizes Its associated slmulabon
parameters As shown the physical model IS a collechon
of termmals multiple CPU servers and mulnple I/O
servers The delay paths for the think and restart delays
are also reflected m the physlcal queumg model Slmula-
tlon parameters specify the number of CPU servers the
number of l/O servers and the number of terminals for
the model When a transaction needs CPU service It IS
asslgned a free CPU server, otherwise the transaction wants
unnl one becomes free Thus the CPU servers ma) be
thought of as bemg a pool of servers all Idenbcal and serv-
mg one global CPU queue Requests m the CPU queue
are ser\lced FCFS (first-come first-served) except that

.lO

TERWYALS

Figure 2 Physical Queuing Model

concurrent\ control requests hate prIorIt\ ocer all other
serbice requests Our Ii0 model IS that of a partltroned
database where the data m the database IS spread out
across all of the disks There IS a queue associated ulth
each of the I/O servers When a transacnon needs serklce
It chooses a disk (at random with all disks bemg equall)
Ilkelk) and waits m an 1/O queue associated with the
selected dish The service dlsclphne for the 110 queues IS
also FCFS

The parameters obj-to and obJ-cpu are the amounts of
I/O and CPU time associated W&I readmg or wrlhng an
obJect Readmg an object takes resources equal to obJ-to
followed by obj-CpU Wrlhng an object takes resources
equal to obj-cpu at the Dme of the write request and obJ-co
at deferred update hme as It IS assumed that bansachons
mamtam deferred update hsts m buffers In mam memory
These parameters represent constant service time require-
ments rather than stochasnc ones for slmphc@ The
e\tlh&.-nrne parameter IS the mean of an exponenDal hme
dlstrlbubon which determmes the time delay between the
complebon of a transacuon and the mltlatjon of a new tran-
saction from a termmal Fmall) the rrrtr/nrlhrrme param-
eter IS the mean of an exponential time dlstrlbutlon which
determmes the mtra-transaction thmh time for the model (If
any) To model mteracuve workloads transactions can be
made to undergo d thmkmg period between fimshmg their
reads and startmg their writes

A transactjon IS modeled according to the number of
obJectc that it reads and writes The parameter rratLstze IS

Parameter Meanmg
db-size number of obJects In database
tran-srzr
ttUZLSlZC
mm-we
wrrte-prob
restart-delaj
num-ret ms
mpl
e~Lthttth-ttttw
tnttlmh.rtttte
objm.ro
objmcpu
nut?lcpus
ttutt~drsls

mean size of transacbon
size of largest transacnon
size of smallest transacnon
Pr(wrlte X 1 read X)
mean transactlon restart delay
number of termmals
multiprogramming level
mean time between transactions
mean mtra-transacnon think time
I/O hme for accessmg an ObJect
CPU hme for accessmg an ObJeCt
number of cpus
number of disks

Table I Simulation Parameters

the average number of objects read by a transachon the
mean of a umform dlstrlbubon between MlLslze and
I)zcL*sIze (mcluslve) These objects are randomly chosen
(without replacement) from among all of the ObJectsi In the
database The probability that an object read by a transac-
hon ~111 also be written IS determined by the parameter
trrtreprob The size of the database IS assumed to be
db- stze

The reader may have noted the absence of exphclt
concurrency control cost parameters We assume for the
purpose ot this study that the cost of performmg con-
currency control operahons IS neghglble compared to the
cost of accessing objects It has been shown elsewhere that
the concurrenct control request processing costs for algo-
rithms based on lockmg and ophmlshc methods are roughly
comparable ICare83bj the mam difference being the hmes
at which these costs are Incurred so this assumption
should not bias our results

4 PERFORMANCE EXPERIMENTS
We performed a number of slmulatlon experiments to

study the lmphcahons of different assumpbons on the per-
formance of the three concurrency control algorithms
described m Secbon 3 We first examined the performance
of the three strategies in the case of very low conflicts We
then mvesbgated the performance under the mfmlte
resources assumpcron with hmlted resources and with
multiple CPUs and disks Last ue examined the case Of
an Interactike workload

Table 2 gives the stmulatlon parameter values used for
the experiments reported here (except where otherwise
noted) The parameters that car) from experiment to
experiment are not hsted In the table but wdl Instead be
given m the descrlptlon of the experiments The database
and transaction sizes were selected so as to lomtlq yield E
region of okration which allous the mteresbng perfor-
mance effects to be observed ulthout necesqnatmg impossi-
bly long slmulatlon times These sizes are expressed in
pages as we equate objects and pages In 0-11s stud\ The
multlproglammmg level IS \arred between a hmn of 5 tran-
sactlons and a lrmlt of the total number of termmals set to
200 m this stud\ to allon a range of confhct probabihues

111

---”

T
120

h

r

cl
80

”

8

h
40

P

”

t

0 - blocking 0 - immediate-restart A - ophmlsnc

I I

50 loo 1.50 200

Muloprogrammmg Level

Figure 3 Throughput (Infinite Resources)

to be mvestlgated The object processmg costs were chosen
based on our notion of roughly what realistic values might
be We employed a modified form of the batch means
method [Sarg76] for our stahsbcal data analyses and each
emulation was run for 20 batches with a large batch hme
to produce sufficiently bght 90% confidence mtervals 3 The
actual batch bme varied from experiment to experiment,
but the throughput confidence Intervals were typically m
the range of plus or minus a few percent of the mean
value more than sufficient for our purposes We discuss
only the stansucally slgmficant performance chfferences
when summarlzmg our results All throughput results are
expressed in units of transactions per second and response
bmes are given m seconds

Throughout the paper we use a fixed set of symbols
for represenbng the data pomts obtamed from the three dlf-
ferent concurrency control algorithms These symbols are
summarized at the top of each of the pages with graphs

4 1 Evperlment 1 Low Conflict Sltuatlon
For the first experiment we used a larger database

size of 10 000 objects Due to the large database size and
the relanvelj small transachon size there were few con-
fl~cts In this experiment The throughput results for a sys-
tem W&I miinrte resources and a system wtth finite
resources (I CPU and 2 disks) are shown m Figures 3 and
4 respecnvelb The performance of the three concurrent)
control strategies was close m both cases confirming the
results reported In [Care83a, Care84, Agra83a Agra83b]
and elsewhere - If confhcts are rare It makes little chffer-
ence which concurrency control algorithm IS used In both
cases. blochng outperformed the other two algorithms by a
small amount Note also that the throughput curves reach
a plateau at a mulbprogrammmg level of 75 In Figure 3
(the mfimte resource case) This IS due to the fact that

3 More InformatIon on the details of the mod&d batch means
method rrav be found In [Care83a]

6

T

h

”

B

h2

P

”

t
1

50 loo 150 200

Mulnpropmmmg Level

Figure 4 Throughput (1 CPU 2 Disks)

with 200 terminals a I second think time and an execu-
bon bme of 500 mllhseconds (on the average) mcreasmg
the allowed number of acnve transactions beyond 75 has no
effect - all avadable transacuons are ahead) acnve and
the rest are in the think state A plateau IS reached earher
m Figure 4 (the finite resource case) because the resources
are saturated with 25 concurrently acbve transacuons

Smce we were Interested in mveshgatmg differences m
concurrency control strateges we decreased the database
size to 1000 objects (as shown in Table 2) to create a sltua-
bon where conflicts are more frequent The rest of the
experiments were performed using this database size

4 2 Experiment 2 Infinite Resources
The next experiment examined the performance

characterlsncs of the three strategies assuming infinite
resources for a variety of mulbprogrammmg levels With
mfinite resources as the mulhprogramtnmg level IS

Increased the throughput should also increase In the
absence of data contenbon However for a given Size data-
base the probablhty of confhcts increases as the mulbpro-
grammmg level increases For blcckmg the increased
confhct probablhq ~111 manifest Itself In the form of more

Parameter Value
db- stze 1000 pages
traxstze 8 page readset
ma32lze 12 page readset (maximum)
tmasrze 4 page readset (mmimum)
wrtreprob 0 25
nuttL terms 200 termmals
mpl 5 10, 25, 50, 75 100 and 200
extthrnLttme I second
obj- 10 35 mdhseconds
obkcpu 15 milliseconds

Table 2 Simulahon Parameter Settmgs

112

0 - blockmg CJ- Immediate-restart A - opbmlsbc

90

T

h

”

B

h30

d

50 100 I50

Multlprogrammmg Level

Figure 5 Throughput (lnfimte Resources)

1

200

blocking due to demal of lock requests and an Increased
number of restarts due to deadlocks For the restart-
orlented strategies the htgher probablht? of confhcts will
result m a larger number of restarts

Figure 5 shows the throughput results for Experiment
2 Blockmg starts thrashmg as the multlprogrammmg level
1s increased beyond a certam level whereas the throughput
keeps mcreasmg for the opnmlshc algorithm These results
agree with predlchons m [Fran831 that were based on slml-
lar assumpbons Figure 6 shows the average number of
bmes that a transactjon was blocked and restarted per com-
mlt called the block ratlo (dotted Ime) and the restart rabo
(solid lmes) for the three concurrency control algorithms
Note that the thrashmg m blockmg IS due to the large
Increase m the number of times that a transacnon IS
blocked, which reduces the effect!\e mulnprogrammmg
level rather than to an mcrease m the number of restarts
This result IS m agreement with the asseruon m [salt82
Tay84a, Tay84b] that under low resource contentlon and a
high level of mulhprogrammmg blockmg ma? start thrash-
mg before restarts do Although the restart ratlo for the
op0mlstic algorithm Increases qulcklq with an Increase m
the mulbprogrammmg level new transacbons start execut-
mg m place of the restarted ones, keepmg the effechve
mulhprogrammmg level high and thus entsulmg an Increase
rn throughput

Unhke the other two algorithms the throughput of the
Immediate-restart algorithm reaches a plateau This hap-
pens for the followmg reason When a transacbon IS res-
tarted m the lmmedlate-restart strategy, a restart delay IS
Invoked to allow the confhctmg transactlon to complete
before the restarted hY+fWIchon IS placed back m the ready
queue The duration of the restart delay 1s exponenual with
a mean equal to the runnmg average of the transaction
response time - that IS the durabon of the delay IS adap-
tlve depending on the observed average response time We
chose to employ an adaphve delay after performmg a sense-

5

4

C
r

0 3
a

n
t

f 2
I

1
0

1 I
s

e

t

20

I5

D

e
10

I

a

Y5

50 100 150 200

Muluprogrammmg Level

Figure 6 Confhct Ranos (Infimte Resources)

--(p--e- /-------+-J

I 1 1 I t

50 100 I50 200

Muluprogrammmg Level

Figure 7 Response Time (Infimte Resources)

tiv~ty analysis that showed us that the performance of
Immexhate-restarts IS senslhve to the restart delay nme par-
hcularly In the mfimte resource case Our experiments
mdlcated that a delay of about one transactlon time IS best
and that throughput begms to drop off rapIdly when the
delay exceeds more than a few transacnon times Because
of this adapbve dela). then the lmmedlate-restart algorithm
reaches a state where mcreasmg the multlprogrammmg
level does not result m an actual Increase m the number of
acuve transactlons - there are no transacnons waltmg m
the ready queue so mcreasmg the allowed populanon has
no effect All of the non-active transactions are either m a
terminal thmkmg state or a restart delay state

Figure 7 shows the mean response time (sohd Imes)
and the standard devlanon of response hme (dotted hnes)
for each of the three algorithms The response hmes are
baslcally what one would expect given the throughput

113

I - .

0 - blochmg c - Immediate-restart A - optlmlstlc

6-

T

h

u

g

h 2-

P

” 0
I

so 100
Muluprogrammmg Level

150 200

”
1 I I I 8

SO 100 I.50 200

Muluprogrammmg Level

Figure 8 Throughput (I CPU 2 Disks) Figure 9 D~sb Uhhzanon (I CPU 2 Disks)

results plus the fact that we have employed a closed queu-
mg model TINS figure does Illustrate one Interesting
phenomenon that occurred m nearly all of the experiments
reported m 011s paper The standard denanon of the
response brne IS smaller for blockmg than for the
Immediate-restart algorithm o\er most of the multlprogram-
mmg levels explored - the response nme variance for the
Immediate-restart algorithm IS quite slgnlficant A high
variance m response time IS undesirable from a user s
standpomt

4 3 Experiment 3 Resource-Lunlted Sltuatlon
In Experiment 3 we analyzed the Impact of fimte

resources on the performance characterlsfics of the three
concurrency control algorithms A database system with I
CPU and 2 disks was assumed for this experiment The
throughput results are presented m Figure 8

Observe that for all three algorithms as the mulnpro-
grammmg level IS Increased the throughput first Increases
then reaches a peak and then finally either decreases or
remams roughly constant In a system with fimte CPU and
l/O resources the achievable throughput may be con-
stramed bq one or more of the followmg factors It ma) be
that not enough transacoons are avallable to keep the sys-
tem resources bus) Alternabvely It may be that enough
transactlons are avallable but because of data contenhon
the “useful” number of transacuons IS less than what 1s
requtred to keep the resources “useful])” bus) That IS
transactlons that are blocked due to loch confhcts are not
useful ylrnllarlq the use of resources to process transac-
tlons that are later restarted IS not useful Fmall) It ma\
be that enough useful non-confllctmg transactions are
a\allable but that the a\allable resources are alread)
saturated

the resources ubhzed at low levels of muluprogrammmg
Figure 9 shows the total (sohd hnes) and useful (dotted
hnes) disk utdlzauons for thus experiment The useful utlh-
zatlons mdlcate the fraction of the resources used to do
work that actually completed (1 e they exclude the frachon
used for worh that was later undone by restarts) The ut111-
zanon of the disks IS selected here because the disks are
the bottleneck resource with our parameter settmgs Note
the direct COrrdahOn between the useful unhzaclon curves
of Figure 9 and the throughput curves of Figure 8 a trend
that IS evident m all of the experiments reported here For
blocbng the throughput peaks at mpl = 25 where the
disks are bemg 97 2% uuhzed with a useful utlhzatlon of
92 1% lncreasmg the muluprogrammmg level further
onlj Increases data contention and the throughput
decreases as the amount of blockmg and the number of res-
tarts Increase at a much faster rate For the optrmlsnc
algorithm the useful uhhzaQon of the disks peaks at mpl =
IO and the throughput decreases with an increase m the
mulhprogrammmg level because of the increase In the res-
tart ran0 This restart ratlo increase means that a larger
fraction of the disk hme IS spent on processmg ObJects that
WIII be redone later For the lmmedlate-restart algorithm
the throughput also peaks at mpl = IO and then decreases
remammg rough]) constant beyond 50 The throughput
remams constant for this algorithm for the same reason as
described m the last experiment - mcreasmg the allowable
number of transactlons has no effect beyond 50 as all of
the non-acme transachons are either thmkmg or m a res-
tart delay state

As the multlprngrammmg level was Increased the
throughput first Increased for all three concurrent\ control
algorithms as there were not enough transactions to keep

With regards to the throughput for the three strategies
several observauons are m order First the maxlmum
throughput (I e the best global throughput) was obtamed
with the blochmg algorithm Second lmmedlate-restarts
performed as well as or better than the opumlshc algo-
rlthm There were more restarts ~lth the cptnnlqnc algo-
rlthm and each restart was more cxpenslve this IS

u

114

80

D

e60

I

a40

0 - blockmg 0 - immediate-restart A - OphmlShc

6
T

h

”

t2

h
2

P

”

t

I 1
so loo 150 200

Mulaprogrammmg Level

Flgure IO Response Time (I CPU 2 Disks)

reflected m the relahve useful disk uhhzatlons for the two
strategies Fmallq the throughput achieved with the
Immediate-restart strategy for mpl = 200 was somewhat
better than the throughput achieved with either blockmg or
W&I the optlmlstlc algortthm

Figure IO gives the average and the standard devlahon
of response nme for the three algorithms m the fimte
resource case The differences are eben more nohceable
than m the mfimte case Blochmg has the lowest delay
(fastest response time) over most of the muluprogrammmg
levels The Immediate-restart algorithm IS next and the
OphmlstX algorithm has the worst response time As for
the standard de\lahons blochmg 1s the best Immediate-
restarts IS the worst and the optlmlstlc algorithm IS m
between the two As m Experiment 1 the Immediate-
restart algorithm exhlblts a verv high response hme \arl-
ante

One of the pomts rzused earher merits further dlscus-
slon Should the performance of the Immediate-restart
algorithm at mpl = 200 lead us to conclude that
Immediate-restart IS a better strategy at high lecels of mul-
hprogrammmg’ We beheve that the answer IS no for
several reasons First the mulhprogrammmg level IS
Internal to the database system, controllmg the number of
transachons that may concurrently compete for data and
resources and has nothmg to do with the number of users
that the database system may support, the latter IS deter-
mmed by the number of termmals Thus one should con-
figure the system to control the mulhprogrammmg at a
level which gives the best performance In our
experiment the highest throughput and smallest standard
devlatlon of response hme were achieved usmg the blockmg
algorithm at mpl = 50 Second the restart delav m the
Immediate-restart strategh IS there so that the confllctmg
transactjon can complete before the restarted transactlon IS
placed back mto the read\ queue However an unmtended
side effect of this restart delac m a svstem alth a fimte

El

Y 9

I
so 100 150 200

Muluprogrammmg Level

Figure I I Throughput (Adaphke Delacs)

number of users IS that It hm1t.s the actual mulhprogram-
mmg level and hence also hmlts the number of confhcts
and resulhng restarts due to reduced data contenhon
Although the multlprogrammmg level was increased to the
total number of users (200) the actual acerage mulhpro-
grammmg level never exceeded about 60 Thus the restart
delay provides a crude mechamsm for hmmng the mul-
hprogrammmg level when restarts become over]\ frequent
and addmg a restart delay to the other two algorithms
should Improve their performance at high levels of mul-
uprogrammmg as well

To cerlf\ this latter argument we performed another
experiment where the adapbve restart delay was used for
restarted transacnons m both the blochmg and optimlsbc
algorithms as well The throughput results that we
obtamed are shown m Figure I I It can be seen that mtro-
ducmg an adaptlbe restart delay helped to hmlt the mul-
hprogrammmg level for the blochrng and optlmlstlc algo-
rnhms under high conflrcts as It does for Immediate-
restarts reducmg data contentlon at the upper end of the
curves Blockmg emerges as the clear wmner and the
performance of the opttmlstlc algorrthm becomes compar-
able to the Immediate-restart strategy The one negative
effect that we observed from addmg this dela) was an
Increase m the standard devlahon of the response hmes for
the blockmg and ophmlshc algorithms Smce a restart
delay only helps performance for high mulfiprogrammmg
levels It seems that a better strategy IS to enforce a lower
mulhprogrammmg level hmlt to aved thrashmg due to high
Contenhon and to mamtam a small standard deviation of
response hme

4 4 Experuuent 4 Multiple Resources
In thus experiment we moved the system from fimte

resources towards Infinite resources We increased the
number of resources avallable to IO CPUs and 20 disks and
then to 25 CPUs and 50 disks to determme where finrte

115

0 - blocking 0 - Immediate-restart A - ophmlsbc

~32

h

r
24

0

”

lt’6

h

8
20

h

P
IO

”

t

-3

(I
so 100 150 200

Multlprogrammmg Level

Figure I2 Throughput (IO CPUs 20 Disks)

I I I 1

so 100 150 200

Muluprogrammmg Level

Figure I4 Throughput (25 CPUs 50 Disks) Figure I5 Disk Udlzation (25 CPUs 50 Disks)

resources start behavmg hhe mfimte resources m a mul-
hprocessor database machme environment

For IO CPUs and 20 disks the behavior of the three
concurrency control Grategles was farrly slmllar to the
behavior m the case of I CPU and 2 disks The
throughput results for 011s case are shown m Figure I2
and the disk uhhZi3hOn figures for thus case are given In
Figure I3 Blocking agam provided the highest overall
throughput For large mulbprogrammmg levels however
the Immediate-restart strategy probIded better throughput
than blockmg but not enough to beat the hrghest
throughput probIded by the blockmg algorithm In this
resource configuratlon the maxlmum useful uhhzations of
the dlshs with the blockmg lmmechate-restarts and the
opnmlstlc algorithm were 55 5% 44 6% and 466%
respective]) ahereas the maximum total disk utihzahons

u

t

I

I

I

2.

a

t

1

0

”

U

t

I

t

I

z

a

t

I

0

”

IO

08

06

04

02

I I 1 0

so 100 150 200

Muloprogrammmg Level

Figure I3 Disk Unhzatlon (10 CPUs, 20 Disks)

10

08

06

04

1 1 1

so loo 150 200

Muluprogrammmg Level

were 61 8% 72 6% and 94 I% Note that due to res-
tarts the total utlhzabons for the restart-oriented algorithms
are higher than those for blockmg the difference IS par-
hall) due to wasted resources By “wasted resources”
here we mean resources used to process ObJects that were
later undone due to restarts - these resources are wasted
m the sense that they were consumed mahmg them una-
vallable for other purposes such as background tasks

For 25 CPUs and 50 dlshs the maximum throughput
obtamed with the ophmlstlc algorithm beats the maxImum
throughput obtamed W&I blockmg (although not by very
much) The throughput results for this case are shown m
Figure I4 and the unhzatlons are given m Figure I5 The
total and the useful disk uhhzabons for the maxlmum
throughput pmt for blockmg were 33 5% and 30 I %
(respechvely) whereas the correspondmg numbers for the

116

OptImlstK algorithm were 62 6% and 32 6% Thus the
optimlshc algorltbm has become attracnve because a large
amount of otherwlse unused resources are akalable and
thus the resources wasted due to restarts does not adversely
affect performance In other words W&I useful uhhzations
m the 30% range the system begms to behave somewhat
like It has mfimte resources

Another mtereshng observation from these results 1s
that with blockmg resource unhzauon decreases as the
level of mulaprogrammmg increases and hence throughput
decreases This IS a further mdlcatlon that blockmg may
thrash due to wamng for locks before It thrashes due to the
number of restarts IBaIt Tay84a Tay84b] as we saw m
the mfimte resource case On the other hand with the
optimlstlc algorithm as the mulhprogrammmg level
Increases the total ubhzatlon of resources and resource
waste Increases and the throughput decreases somewhat
Thus thus strategy ecentuallq thrashes due to the number
of restarts (I e because of resources) With Immediate-
restarts as explamed earher a plateau IS reached for
throughput and resource utlhzanon because the actual mul-
bprogrammrng level IS hmlted b\ the restart dela) under
high data contention

4 5 Experiment 5 Interactive Worhloads
In our last experiment we modeled mteractl\e tran-

sacbons that perform a number of reads thmk for some
period of nme and then perform tbelr writes This model
of mteractlve transactIons was momated by a large hod\ of
form-screen apphcatlons where data 1s put up on the
screen the user ma\ change some of the fields after starmg
at the screen for a while and then the user types “enter”
causmg the updates to be performed The intent of this
experiment was to find out whether large mtra-transacnon
- Internal - thmk times can cause a system with finrte
resources to behake hke it has mfimte resources The
mteractlve workload experiment was performed for Internal
thmh times of 1 5 and IO seconds At the same hme the
external thrnh times were Increased to 3 11 and 21
seconds (respectIveI\) m order to keep roughly the same
rauo of thmkrng transactions to active transactIons We
hate assumed a fimte resource environment W&I 1 CPU
and 2 disks for the system m thus experiment

Figure paus (16 17) (18 19) dnd (20 21) show the
throughput and drsk utlhzatlons obtamed for the I 5 and
10 second Inter-transactjon thmk time experiments (respec-
bvely) On the average a tranqactlon requires 150 mll-
hseconds of CPU hme and 350 mdhseconds of disk time
so Internal thmk times of 1 5 and 10 seconds thus consld-
erablq Increase the duration for which a locks are held
Thus causes the resource ubhzabon for blockmg to decrease
as the Internal thmk hme Increases With the opbmlsbc
algorithm the demand for resources IS also reduced due to
large thmk ames and the resources start behavmg as
though they were mfimte resources Consequendy for
large thmk times the opnmlsbc algorithm performs better
than the blockmg strategy (see Figures 18 and 20) For an
Internal thmk time of 21 seconds the useful utihzabon of
resource5 IS much higher with the opfimrstlc algorrthm than

the blockmg strategy and the highest throughput value IS
also conslderablq higher For 5 seconds of internal thmk
hme the throughput and the useful utlhzatlon n1tl-1 the
optlmlshc algorithm IS also better than for blockmg For a
I second Internal thmk bme however blockmg performs
better (see Figure 16) The resource unhzauons here are
such that wasted resources due to restarts makes the
optlmlsnc algorithm the loser

The highest throughput obtamed W&I the opumlstlc
algorithm was consIstentI> beael than that for Immediate-
restarts although for higher levels of multlprogrammmg
the throughput obtamed w1tl-1 Immediate-restarts uas better
than the throughput obtamed wltb the optlmlsbc algorithm
due to the mulbprogrammmg-hmmng effect of Immediate-
restart s restart delay As noted before 011s high multipro-
grammmg level difference could be reversed bq addmg a
restart delay to the optlmlsnc algorithm

5 CONCLUSIONS AND IMPLICATIONS
One major conclusion of 011s stud) IS that for medium

to high levels of resource utihzatron a blockmg algorltbm
hke dynamic two-phase lockmg IS a better choice than a
restart-orlented concurrency control hke the Immediate-
restart or optlmlstlc algorithms However If resource Utah-
zatlons are sufficlentlq low that a large amount of wasted
resources can be tolerated and m addmon there are a large
number of transactions acallable to execute then a restart-
orlented algorithm IS a better choice We found the
optlmlsbc algorithm to be the best choice under these con-
dmons Such 10~ resource utlhzatlons could arlse m a
database machme with a large number of CPUs and disks
and a number of termmals slmllar to what one finds m typ
lcal tlmesharmg systems today Thev could also arise m
prlmarlly Interactive apphcahons where very large thmk
times occur and the number of termmals IS such that the
utllizahon of the system is low as a result It 1s an open
quesnon whether or not such low uhhzabons could really
occur m real systems If not blocking algorithms will
remam the preferred method for database concurrency con-
b-01

Another result of this study IS that we have re-
confirmed results from a number of other studies mclud-
mg those reported m IBaIt Agra83a Agra83b Care83a
Care84 Fran83 Taj84a Tay84bJ We have shown that
seemmgl) contradictor\ results some of which favor bloch-
mg algorithms and others of which favor restarts are not
contradIctor\ at all The studies are all correct w&m the
hmlts of their assumptions partlcularlq their assumpbons
about system resources While It IS possible to study the
effects of data contention and resource contenuon
feparatelk m some models [Tay84a Tay84b] It appears not
to be worth domg so If the goal IS to select a concurrency
control algorithm for a real system - the proper algorithm
choice IS resource-dependent

An mterestmg side result of th~s stud) IS that the level
of multlprogrammmg m database systems should be care-
fully controlled We refer here to the multtprogrammmg
level Internal to the database system controllmg the
number of transacbons that ma) concurrent\> compete for

117

0 - blockmg C - Immediate-restart A - ophmisac

6

T

h

r
4

0

”

B

h2

P

”

t
I I f

50 loo I50 200

Mulbprogrammmg Level

Figure 16 Throughput (1 Second Internal Thmkmg) Fqure 17

T

“3

r

0

II2

t3

h

P ’

”

t

I ,

50 loo 150 200

Muluprogrammmg Level

Figure 18 Throughput (5 Seconds Internal Thmkmg)

T
3

h

r

g

h
I

P

”

t
1

50 loo 150 200

Multlprogrammmg Level

u

IO
t

I

08
I

I
06

z

a
04

t

I
02

0

”

U
IO

t

I
08

I

I
06

z

P
04

t

I
02

0

”

Figure 19 Disk Ubhzanon (5 Seconds Internal Thmkmg)

10
U

08
1

1

I 06

z

P 04

t

I 02

0

”

I

I

I I 1 ,

50 loo 150 200

Muluprogrammmg Level

Disk Uahzahon (I Second Internal Thmkmg)

r

‘m----
--__ -- -0

1 1

50 loo I50 200

Muluprogrammmg Level

50 100 150 200

Mulnprogrammmg Level

Figure 2 1 Disk Ubhzabon (IO Seconds Internal Thmkmg) Figure 20 Throughput (10 Seconds Internal Thmkmg)

118

data, CPU and l/O serkxes As in the case of paging
operating systems if the mul~programmmg level is

increased beyond a certain level the blocking and optimis-
tic concurrency control strategies start thrashing We have
confirmed the results of [Balt82, Fran83 Tay84a. Tay84b]
for lockmg in the low resource contention case but more
important]> we have also seen that the effect can be signifi-
cant for both locking and optimisbc concurrency control
under higher levels of resource contention We found that
when we delayed restarted transacbons by an amount equal
to the running average response time it had the beneficial
side effect of limiting the actual mulbprogrammmg level
and the degradation in throughput was arrested (albeit a ht-
tle bit late) Since the use of a restart delac to limit the
mulbprogrammmg level is at best a crude strategv adaptive
algorithms that dynamically adJust the multiprogramming
level in order to maximize system throughput need to be
designed Some performance indicators that might be used
in the design of such an algorithm are useful resource utile-
zation, running averages of throughput or response time
etc The design of such adaptive algorithms IS an open
problem

In closing we wish to leave the reader with the fol-
lowing thoughts about the future, due to Bill Wulf
[Wulf81)

“Although the hardware costs will contcnue to fall
dramatccalll and machme speeds will increase equal-
ly dramancalk we must assume that our asplratcons
wdl rrse even more Because of thu, we are not about
to face either a cvcle or memon) surplus For the
near-term fiture the dommant effect wrll not be
machme cost or speed alone but rather a contrnumg
anempt to mcrease the return from a finite resource
- that IS a particular computer at our disposal ”

ACKNOWLEDGEMENTS
The authors wish to acknowledge helpful discussions

that one or more of us have had with Mary Vernon Nat
Goodman and (especially) Y C Taq Comments from
Rudd Canaday on an earlier version of this paper helped us
to improve the presentation The NSF-sponsored Crystal
multicomputer proJect at the University of Wisconsin pro-
vided the many VAX II/750 CPU-hours that were required
for this study

REFERENCES

; Agra83a J Agrawal R and Dewitt D Integrated
Concurrence Control and Recover Mechan-
isms Design and Performance Evaluation
Technical Report No 497 Computer SCI-

ences Department University of Wisconsm-
Madison February 1983

(Agra83b]

I Bada79]

IBaIt

[Bern80a]

(Bern80bj

[Bern811

[Bern821

ICare83a]

[Care83b]

] Care841

[Casa79]

Agrawal, R Concurrent) Control and
Recover 111 Multcprocessor Database
Machines Design and Performance Evalua-
non Ph D Thesis Computer Sciences
Department University of Wisconsin-
Madison I983
Badal D ‘Correctness of Concurrency
Control and lmplicabons in Distributed Data-
bases Proceedrngs of the COMPSAC ‘79
Conference Chicago Illinois, November
1979

R Balter P Berard and P Decitre “Why
Control of the Concurrency Level in DISWI-

buted Systems is More Fundamental than
Deadlock Management Proceedmgs of the
First ACM SIGACT-SIGOPS Symposrum on
Prmclples of Dlstrlbuted Computmg August
1982

Bernstein P and Goodman N Fundamen-
tal Algorcthms for Concurrent\ Control m Du-
tnbuted Database Svstems Technical Report
Computer Corporanon of America 1980
Bernstein P , and Goodman N

Timestamp-Based Algorithms for Con-
currency Control in Distributed Database
Systems Proceedmgs of the Stxth Interna-
tional Conference on Verv Large Data Bases
October 1980
Bernstein P and Goodman N Con-
currency Control in Distributed Database
Systems ACM Computmg Survevs 13(2)
June 1981
Bernstein P and Goodman N “A
Sophisbcate s lntroduchon to Distributed
Database Concurrency Control Proceedcngs
of the Eighth International Conference on Ven
Large Data Bases September 1982
Carey M Modelmg and Evaluation of Data-
base Concurrent\ Control 4Igorrthms Ph D
Thesis Computer Science Division (EECS)
University of California Berkeley Sep-
tember 1983
Carey M “An Abstract Model of Database
Concurrency Control Algorithms Proceed-
ings of the ACM SIGMOD Internatronal
Conference on Management of Data San Jose
California May 1983
Carey, M , and Stonebraker M ‘The Per-
formance of Concurrency Control Algorithms
for Database Management Systems
Proceedmgs of the Tenth lnternatlonal Confer-
ence on Very Large Data Bases Singapore
August 1984
Casanova M The Concurrency Control
Problem for Database Systems Ph D Thesis,
Computer Science Department, Harvard
University 1979

119

[Cer1821

[Fran831

IGall82]

1 Good83]

[Gray791

[Gray811

I Iran791

[Kungll]

[Lm 82aj

[Lm82b)

[Lm83]

[Lmd79]

Cerl S and Owlclu S “On the Use of
Optimisuc Methods for Concurrency Control
m Dlstrlbuted Databases Procecdrngs of the
Sixth Berkelex Worhshop on Dlstrrbuted Data
Management and Computer Nent or Is Febru-
ary 1982
Franaszek P and Robinson J Lunrtatlons
of Concurrent\ rn T~ansactlon Processmg
Report No RClOl51 IBM Thomas J Wat-
son Research Center August 1983
Galler B Concurrem\ Control Performance
Issues Ph D Thesis Computer Science
Department University of Toronto Sep-
tember 1982
Goodman N Surl R and Taq Y A
Simple Analytic Model for Performance of
Exclusive Lockmg m Database Systems
Proceedmgs of the Second ACM SIGACT-
SIGMOD Svmpostum on Prrnctples of Database
&stems Atlanta Georgia March 1983
Gra) J ‘Notes On Database Operatmg
Systems in Operating &sterns An Ad\ awed
Course Sprmger-Verlag 1979
Graj J Homan P Korth H and Ober-
marck R 4 Strabr Man 4nal\sls of the Pro-
babtlln of M’amng and Deadlock In a Database
Svstem Techmcal Report No RJ3066 IBM
San Jose Research Laborator) February
1981
lram h and Lm H Queuing Network
Models for Concurrent Transacnon Process-
ing m a Database System Proceedrngs of
the ACM-SIGMOD International Conference on
Management of Data 1979
Kung, H and Robmson J “On Ophmlshc
Methods for Concurrency Control ACM
Transactions on Database Svstems 6(2) June
1981
Lm W and Nolte J Dlstrtbuted Database
Control and Allocanon Semi-Annual Report
Techmcal Report Computer Corporauon of
America CambrIdge Massachusetts Janu-
ary 1982
Lm W and Nolte J ’ Performance of
Two Phase Lockmg Proceedmgs of the
St\ th Berkelel Workshop on Distributed Data
Management and Computer Nenuorhs Febfu-
an 1982

Lm W and Nolte J “Basic Timestamp
Mulnple Version TImestamp and Two-Phase
Locking Proceedmgs of the Nmth Interna-
tional Conference on ken Large Data Bases
Florence Ital) November 1983
Lmdsa) B et al Notes on Dlstrrbuted Data-
bases Report No RJ2571 IBM San Jose
Research Laboratory 1979

Mena 1

Pem83]

[PohSO]

[Reed781

IReut83j

Rles77]

Rles79a]

[Rles79b]

Menasce D and Muntz R “Lockmg and
Deadlock Detechon in Dlstrlbuted Data-
bases Proceedings of the Third Berkelej
Workshop on Distributed Data Management
and Computer Networhs August 1978
Peml P and Reuter A EmpIrical Com-
parison of Database Concurrency Control
Schemes A oceedmgs of the Ninth Interna-
tlonal Conference on I/fn Large Databases
1983
Potler D and LeBlanc P Analysis of
Lockmg Pohcles In Database Management
Systems Communlcatlons of the ACM
23(10) October 1980
Reed D Nammg and Svnchronrzatlon 111 a
Decentralaed Computer Svstem Ph D
Thesis Department of ElectrIcal Engmeermg
and Computer Science Massachusetts lnstl-
tute of Technology I978
Reuter A An Anal\ tic Model of Transachon
Interference tn Database Sjstems IB 68183
Umverslty of Kaserslautern West Germany
1983

&es D and Stonebraker M Effects of
Lockmg Granularity on Database Manage-
ment System Performance ACM Transac-
tions on Database Systems 2(3) September
1977

Ries D The Effects of Concurrex\ Control
on Database Management S\ stem Performance
Ph D Thesis Department of Electrical
Engmeermg and Computer Science Umver-
slty of Cahforma at Berkeley 1979
Rles D and Stonebraker M Loclung
Granularity Revisited ACM Tt ansacttons on
Database &stems 4(2) June 1979

(Rob182aj Robinson 3 Design of Concurrerw Controls
for Transactron Processrng Systems Ph D
Thesis Department of Computer Science
Carnegie-Mellon Urmerslrq I982

[Rob182b] Robinson J Expertmcnts 11 rth Transactron
Processrng on a Multi-Mwroprocessor Report
No RC9725 IBM Thomas J Watson
Research Center December I982

[Rose781

[Sarg761

1 Splt76]

Rosenhrantz D Stearns R and Lewis
P System Level Concurrenq Control for
Dlstrlbuted Database Systems 4CM Tran-
sact/ons on Database S\stems 3(2) June
1978

Sargent R Stz@shcai Analbsls of Simula-
non Output Data Proceedrngs of the Fourth
Annual Swposlum on the Smlulatron of Com-
puter S\stems August 1976
Spltzer J Performance Prototyping of
Data Management Apphcatlons Proceed-
ings of the ACM 76 Annual Conference
October 1976

120

I Stan 791

[Tay84al

ITay84bl

Stonebraker M “Concurrency Control and
Consistency of Muluple Copies of Data m
Dlstrlbuted INGRES IEEE Transactrons on
Software Engrneermg X3) Ma! 1979
Tay Y A Mean Value Performance Model
for Loclung m Databases, Ph D Thesis
Computer Science Department Harvard
Umverslty February 1984
Tay Y , and Sun, R ‘ Choice and Perfor-
mance in Lockmg for Databases’ Proceed-
mgs of the Tenth International Conference on
Ven, Large Data Bases Singapore August
1984

[Thorn791 Thomas R “A MaJority Consensus
Approach to Concurrence Control for Multi-
ple Copy Databases ACM Ti ansactlons on
Database Slstems 4(2) June I979

[Thorn831 Thomasian A and Ryu 1 ‘A Decomposl-
hon Solutron to the Queuing Network Model
of the Centralized DBMS with Static Lock-
‘ng Proceedcngs of the ACM-SIGMETRICS
Confirence on Measurement and Modelmg of
Computer Svstems Minneapolis MN, August
1983

[Wulf81] Wulf w ‘CornplIers and Computer Archl-
tecture IEEE Computer Jul) I98 1

121

