MODELS FOR STUDYING CONCURRENCY CONTROL PERFORMANCE
ALTERNATIVES AND IMPLICATIONS

Rakesh Agrawal

AT&T Bell Laboratories
Murray Hill NJ 07974

Michael J Carer
Miron Lnm

Computer Sciences Department
Unnersitv of Wisconsin

Madison Wl

ABSTRACT

A number of recent studies have exammed the performance
of concurrency control algorithms for database manage-
ment systems The results reporied to date rather than
bemng definiuve have tended to be contradictory In this
paper rather than presenting "yet another algorithm per-
formance study” we cniucally invesugate the assumptions
made in the models used 1n past studies and their ymphica-
nons We employ a "complete” model of a database
environment to study the relauve performance of three dif-
ferent approaches to the concurrency control problem
under a ‘ariety of modeling assumptions We show how
differences 1n the underlying assumptions explain the seem-
ingh contradictory performance results We also examine
how realistuc the various assumptons would be for "real”
database systems

1 INTRODUCTION

Research 1n the area of concurrency control for data-
base systems has led to the development of many con-
currency control algorithms Most of these algorithms are
based on one of three basic mechamisms /ocking [Mena78
Rose78 Gray79 Lind79 Ston79] nmestamps [Reed78
Thom79 Bern80b] and opurustc concurrency control
(also called commit-ime vahdatnon or certificanon)
[Bada79 Casa79 Kung8! Ceri82] Bernstein and Good-
man [Bern81 Bern82)} surnvey manv of the algorithms that
have been developed and describe how new algorithms may
be created bv combining the three basic mechanisms

This research was parually supported bv the Wisconsin Alumm
Research Foundation National Science Foundation Grant Number
DCR-8402818 and an IBM Faculty Development Award

Permussion to copy without fee all or part of this matenal 1s granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and 1ts date appear, and notice 1s given that copying is by
permission of the Association for Computing Machinery To copy
otherwise, or to republish, requires a fee and/or specific permission

© 1985 ACM 0-89791-160-1/85/005/0108 $00 75

108

53706

Gnen the ever-growing number of available con-
currency control algonthms considerable research has
recently been devoted 1o evaluatng the performance of the
various concurrency control algorithms The behavior of

locking has been investgated using both simulaton
|Spit76 Ries77 Ries79a Ries79b Balt82 Lin82b] and
analybcal models [Iran79 Pou80 Grav81 Good83

Reut83 Thom83 Tay84a Tav84b] A quahtatnve study
that discussed performance 1ssues for a number of distri-
buted locking and tmestamp algorithms was presented 1n
{Bern80a] and an empirical comparison of several con-
currency control schemes was gnen i [Pen83]
Recently the performance of different concurrency control
mechanisms have been compared in a number of simula-
ton studies The performance of locking was compared
with the performance of basic tmestamp ordering in
|Gall82] and with basic and multiversion tmestamp order-
ing in [Lin83] The performance of several alternauves for
handling deadlockh in lockig algonthms was studied n
|Balt82] Results of expertments comparing locking to the
optimisic method appeared 1in [Robi82a Robi82b] and the
performance of several variants of locking basic timestamp
ordering and the opumistc method were compared n
[Care83a Care84] Finally the performance of several
mntegrated concurrency control and recovery algorithms
were evaluated in [Agra83a Agra83b]

These performance studies are informatve but the
results that have emerged 1nstead of being definiuve have
been very contradictory For example studies by Carev
and Stonebraker |[Care84] and Agrawal and DeWitt
[Agra83a] suggest that an algorithm that uses blocking
instead of restarts 1s preferable from a performance
viewpoint but studies by Tay [Tav84a Tav84bj and Balter
et al |Balt82] suggest that restarts lead to better perfor-
mance than blocking Opumistc methods outperformed
locking in [Fran83] whereas the opposite results were
reported 1n [Agra83b Care83a] Results reported 1n
|Gall82] regarding locking versus basic nmestamp ordering
contradict those of [Lin83) !

! This last example will not be addressed further in this paper

Each of the previous studies employed a different per-
formance model and several of the studies were based on
assumptions that have no clear physical meaning In this
paper nstead of presenung “vet another performance
study” we address the assumptions made in the models
used 1n past studies and therr imphcatons We begin by
establishing a framework based on a complete and (we
believe) “realisic” model of a database management sys-
tem OQur model captures all the main elements of a data-
base environment ncluding both users 1 ¢ terminals the
source of transactions) and physical resources for storing
and processing the data (1 ¢ disks and CPUs) mn addition
to the usual model components (workload and database
characteristics) Based on this framework we show how
differences 1in assumptions explain the apparently contradic-
tory performance results from the previous studies We
also examine what assumpuons are reasonable for real sys-
tems and how more realhisic assumptions would have
altered the conclusions of several of the earlier studies

In particular we cntcally examine the common
assumption of nfinire resources A number of analyucal
studies (for example |[Fran83 Tay84a Ta784b}) and
simulation studies (for example [Lin82b Lin83}) compare
concurrency control algorithms under the assumption that
transactions progress at a rate independent of the number
of concurrent transactions In other words they proceed
in parallel rather than in an interleaved manner This 1s
only really possible in a system with enough resources so
that transactions never have to wait for CPU or 1/0 service
— hence our choice of the phrase "infinite resources”
We will investgate this assumptuon by performing studies
with truly nfinite resources with muluple CPU-1/0 dev-
ices and with transactions that think while holding locks
The infinite resource case represents an "ideal” system the
muluple CPU-1/O device case models a class of multpro-
cessor database machines and having transactions think
while executing models an interactive workload

We examine three concurrency control algorithms in
this study two locking algonthms and an optimistc algo-
rithm, which differ as to when and how they detect and
resolve conflicts Section 2 describes our choice of con-
currency control algorithms We use a simulator based on
a closed queumng model of a single-site database system for
our performance studies The structure and characteristics
of this simulator are described in Secuon 3 Section 4
presents the performance expeniments and our results In
Section 5 we summarize the main conclusions of our study

2 CONCURRENCY CONTROL STRATEGIES

A transaction T 1s a sequence of actuons {a] ay
an} where a 1s either read or write Given a concurrent
execution of transachons action a of transacton T, and
acuon a_ of T conflict if they access the same object and
either (1{ a 1sread and a 1s write or (1) a, 15 write and a
1s read or write The various concurrency control algo-
rithms basically differ in the time when thev detect conflicts
and the way that they resolve conflicts [Bern81] For this
studv we have chosen to examine three concurrency control

109

algonithms that represent extremes 1 conflict detecuon and
resolution

Blocking Transactions set read locks on objects that
thev read and these locks are later upgraded to write locks
for objects which they also wnite If a loch request 1s
denied the requesting transaction 1s blocked A waits-for
graph of transactions 1s maintained [Gray79] and deadlock
detection 1s performed each time a transaction blocks If a
deadlock 1s discovered the voungest transachon mn the
deadlock cycle 1s chosen as the wicum and restarted
Dynamic two-phase locking [Gray79] 1s an example of this
strategy

Immediate-Restart As 1 the case of blocking transac-
tions read-lock the objects that they read and they later
upgrade these locks to write locks for objects which they
also write However 1if a lock request 1s demed the
requesting transaction 1s aborted and restarted after a restart
delay The delay period which should be on the order of
the expected response nme of a transaction prevents the
same conflict from re-occurring repeatedly A concurrency
control strategy similar to this was considered in [Tay84a
Tay84b}

Opunusnc Transactions are allowed to execute unhin-
dered and are vahdated only after they have reached their
commut points A transacton is restarted at its commit
pont 1f 1t finds that any object that 1t read has been written
by another transactton which commutted during its Irfehme
The optimistic method proposed by kung and Robinson
[Kung81] 1s based on this strategy

These algorithms represent two extremes with respect
to when conflcts are detected The blocking and
immediate-restart algorithms are based on dynamic locking
so conflicts are detected as they occur The optimistic algo-
rnthm on the other hand does not detect confhicts untl
transaction commit ttme The three algonthms also
represent two different extremes with respect to conflict
resolunon The blocking algorithm blocks transactions to
resolve conflicts restaring them only when necessary
because of a deadlock The immediate-restart and opurms-
uc algorithms always use restarts to resohe confhcts

One final note 1n regard to the three algorithms In
the immediate-restart algorithm a restarted transaction
must be delayed for some time to allow the conflicung tran-
saction to complete otherwise the same lock conflhict will
occur repeatedly For the optmistuc algorithm 1t 1s
unnecessary to delay the restarted transacton as anv
detected conflict 1s with an already committed transaction
A restart delav 15 also unnecessary for the blocking algo-
nthm as the same deadlock cannot arise repeatedly

3 SIMULATION MODEL

Central to our simulator for studying concurrency
control algorithm performance 1s the closed queuing model
of a single-site database system shown i Figure 1 This
model 15 an extended version of the model used 1n
[Care83a Care84] which in turn had its ongins in the
model of [Ries77 Ries79a Ries79b] There are a fixed
number of tetmmnals from which transacuons originate

TERMINALS

(e
&

ready update
queue .! T—"—e—
) UPDATE
RESTART
¢c_queu
COMMIT

blocked
queue

object
ves gueue
- @ @ @

yes

BLOCK

Figure 1 Logical Queuing Model

There 1s a limit to the number of transactions allowed to be
active at any ume n the system the muluprogramming
level mpl A transaction 1s considered actuve if 1t 1s either
receiving service or waiting for service inside the database
system When a new transaction originates 1f the system
already has a full set of active transactions 1t enters the
readv queue where 1t waits for a currently acuve transaction
to complete or abort (transactions in the ready queue are
not considered active) The transaction then enters the cc
queue (concurrency control queue) and makes the first of
its concurrency control requests If the concurrency con-
trol request 1s granted the transaction proceeds to the
object queue and accesses its first object If more than one
object 1s to be accessed prior to the next concurrency con-
trol request the transaction will cycle through this queue
several umes When the next concurrency control request
1s required the transaction re-enters the concurrency con-
trol queue and makes the request It 1s assumed for model-
ing convenmence that a transaction performs all of 1ts reads
before performing any writes In one of the performance
studhes later in the paper we examme the performance of
concurrency control algorithms under interacuive work-
loads The think path in the model provides an optional
random delay that follows object accesses for this purpose

2 The simulator mamntains backup copies of transaction read and
write sets

110

More will be said about modeling interactive transacuons
shortly

If the result of a concurrency control request 1s that
the transaction must block 1t enters the blocked queue unul
1t 15 once again able to proceed If a request leads to a
decision to restart the transaction 1t goes to the back of the
ready queue possibly after a randomly determined restart
delay period of mean restart_delan (as n the immediate-
restart algorithm) It then begins making all of the same

concurrency control requests and object accesses over

again 2 Eventuallv the transaction may complete and the

concurrency control algorithm may choose to commut the
transaction If the transaction 1s read-only 1t 1s fimshed
If 1t has written one or more objects during its execution
however 1t first enters the update queue and writes 1its
deferred updates nto the database Deferred updates are
assumed here because our simulanon framework 1s
mtended to support am concurrency control algorithm —
all algonthms operate correctly with deferred updates but
not all algorithms work with recovery schemes that do n-
place updates

To further 1llustrate how transactions flow through the
model we briefly describe how the locking algorithms and
the optimistic algorithm are modeled For locking each
concurrency control request corresponds to a lock request
for an object and these requests alternate with object
accesses Locks are released together at end-of-transaction
(after the deferred updates have been performed) Wait
queues for locks and a waits-for graph are maintained by
an algorithm-specific portion of the simulator For optimis-
tic concurrency control the first concurrency control
request 1s granted immediately (1 e 1t 1s a "no-op") all
object accesses are then performed with no intervening
concurrency control requests Only after the last object
access 1s fimshed does a transaction return to the
concurrency control queue in the optimistic case at which
time 1ts vahdation test 15 performed (followed 1f successful
by 1ts deferred updates)

Underlying the logical model of Figure 1 are two phy-
sical resources the CPU and the /O (1 e disk) resources
Associated with the concurrency control object access and
deferred update services in Figure 1 are some use of one or
both of these two resources The amounts of CPU and 1/0
time per logical service are specified as simulauon parame-
ters The physical queuing model 1s depicted in Figure 2
and Table 1 summanizes 1ts associated simulation
parameters As shown the physical model 1s a collection
of termmnals muluple CPU servers and muluple 1O
servers The delay paths for the think and restart delays
are also reflected i the physical queuing model Simula-
uon parameters specify the number of CPU servers the
number of 1/O servers and the number of termmals for
the model When a transacton needs CPU service 1t 1s
assigned a free CPU server, otherwise the transacton waits
untl one becomes free Thus the CPU servers may be
thought of as bemng a pool of servers all identical and serv-
mng one global CPU queue Requests in the CPU queue
are seniced FCFS (first-come first-served) except that

TERMINALS

(o)

readsy
queue

-O—

Figure 2 Physical Queuing Model

””D

concurrency control requests have prionitv over all other
service requests Our 1/0 model 1s that of a parttioned
database where the data in the database 15 spread out
across all of the disks There 1s a queue associated with
each of the I/O servers When a transacuon needs service
it chooses a disk (at random with all disks being equally
likelv) and waits m an /O queue associated with the
selected disk The service discipline for the I, O queues 1s
also FCFS

The parameters obj_io and oby_cpu are the amounts of
1/0 and CPU ume associated with reading or wriung an
object Reading an object takes resources equal to objto
followed by ob_cpy Writing an object takes resources
equal to obycpu at the ume of the write request and ob_to
at deferred update time as 1t 1s assumed that transactions
maintain deferred update lists in buffers in mamn memory
These parameters represent constant service time require-
ments rather than stochasuc ones for simphcity The
ext_think_nume parameter 1s the mean of an exponential ime
distribution which determunes the ume delay between the
completon of a transacuon and the mitation of a new tran-
saction from a terminal Fmally the mr_think_time param-
eter 1s the mean of an exponenual time distribution which
determines the ntra-transaction think ume for the model (if
any) To model interactive workloads transactions can be
made to undergo a thimking period between finishing their
reads and starting their writes

A transaction 15 modeled according to the number of
objects that 1t reads and writes The parameter frarsize 18

111

Parameter Meaning

db_size number of objects 1n database
tran_size mean size of transaction
max_size size of largest transaction
min_size size of smallest transaction
write_prob Pr(write X | read X)
restart_delay mean transaction restart delay
nunLterms number of terminals

mpl multprogramming level

mean time between transactions
mean mtra-transaction think tme

exL think_nme
L think_time

obj_io 1/0 nme for accessing an object
obj_cpu CPU tme for accessing an object
nun_ cpus number of cpus

Aum_disks number of disks

Table 1

the average number of objects read by a transaction the
mean of a uniform distribution between nun_size and
ma_size (inclusive) These objects are randomly chosen
(without replacement) from among all of the objects in the
database The probability that an object read by a transac-
ton will also be written 1s determined by the parameter
write_prob The size of the database 1s assumed to be
db_size

The reader may have noted the absence of explcit
concurrency control cost parameters We assume for the
purpose of this study that the cost of performing con-
currency control operations 1s negligible compared to the
cost of accessing objects It has been shown elsewhere that
the concurrency control request processing costs for algo-
nthms based on locking and optimistic methods are roughly
comparable [Care83b] the main difference being the times
at which these costs are incurred so this assumption
should not bias our results

Simulation Parameters

4 PERFORMANCE EXPERIMENTS

We performed a number of simulanon experiments to
study the imphcations of different assumptions on the per-
formance of the three concurrency control algorithms
described in Section 3 We first examined the performance
of the three strategies in the case of very low conflicts We
then invesngated the performance under the nfinite
resources assumption with hmited resources and with
muluple CPUs and disks Last we examined the case of
an mteractive workload

Table 2 gives the simulaton parameter values used for
the experiments reported here (except where otherwise
noted) The parameters that vary from expeniment to
experiment are not hsted n the table but will nstead be
given m the descripuon of the experniments The database
and transaction sizes were selected so as to jomntly yield a
region of operaton which allows the interesung perfor-
mance effects 10 be observed without necessitating 1impossi-
bly long simulaton umes These sizes are expressed in
pages as we equate objects and pages in this study The
muluprogiamming level 1s varied between a hmat of 5 tran-
sachons and a limit of the total number of terminals set to
200 1n this studv to allow a range of conflict probabihines

0O — blocking
T & £
120 ©
r
°
80
u
[
h
40
P
u
t
1 T T ml
50 100 150 200

Muloprogramming Level

Figure 3 Throughput (Infinite Resources)

to be mnvesngated The object processing costs were chosen
based on our notion of roughly what realisuc values might
be We employed a modified form of the batch means
method [Sarg76] for our statistical data analyses and each
simulanon was run for 20 batches with a large batch tme
to produce sufficiently ight 90% confidence intervals 3 The
actual batch time varied from experiment to experiment,
but the throughput confidence ntervals were typically i
the range of plus or minus a few percent of the mean
value more than sufficient for our purposes We discuss
only the stansucally significant performance differences
when summarizing our results All throughput results are
expressed n units of transactions per second and response
times are given n seconds

Throughout the paper we use a fixed set of symbols
for representing the data ponts obtained from the three dif-
ferent concurrency control algorithms These symbols are
summarized at the top of each of the pages with graphs

41 Expermment 1 Low Conflict Situation

For the first experiment we used a larger database
size of 10 000 objects Due to the large database size and
the relatively small transaction size there were few con-
flicts 1n this experiment The throughput results for a sys-
tem with infimte resources and a system with finite
resources (1 CPU and 2 disks) are shown in Figures 3 and
4 respectivelv The performance of the three concurrency
control strategies was close m both cases confirming the
results reported in [Care83a, Care84, Agra83a Agra83bj
and elsewhere — 1if conflicts are rare 1t makes hitle differ-
ence which concurrency control algonthm 1s used In both
cases, blocking outperformed the other two algorithms by a
small amount Note also that the throughput curves reach
a plateau at a multuprogrammung level of 75 1n Figure 3
(the nfinite resource case) This 1s due to the fact that

3 More information on the details of the modified batch means
method mav be found in [Care83a]

O — immedate-restart

A — optimistic

6

T & 8 —fa

h

r

4 4

L]

u

g

h 24

P

u

t
T L} L 1
50 100 150 200

Mulnprogramming Level

Figure 4 Throughput (1 CPU 2 Disks)

with 200 terminals a | second think tme and an execu-
tion time of 500 milliseconds (on the average) increasing
the allowed number of active transactions bevond 75 has no
effect — all available transactions are already actve and
the rest are in the think state A plateau 1s reached earher
in Figure 4 (the finite resource case) because the resources
are saturated with 25 concurrently active transactons

Since we were mterested 1n 1nvestgatung differences n
concurrency control strategies we decreased the database
size to 1000 objects (as shown 1n Table 2) to create a situa-
ton where conflicts are more frequent The rest of the
experiments were performed using this database size

4 2 Experiment 2 Infinite Resources

The next experiment examined the performance
characterisics of the three strategies assuming infinite
resources for a variety of muluprogramming levels With
infimte resources as the muluprogramming level 1s
increased the throughput should also increase n the
absence of data contention However for a given si1ze data-
base the probability of conflicts increases as the multipro-
gramming level increases For blocking the increased
conflict probability will manifest itself i the form of more

Parameter Value

db_size 1000 pages

tran_size 8 page readset

max_size 12 page readset (maximum)
min_size 4 page readset (minmimum)
write_prob 025

nunwterms 200 terminals

mpl 5 10, 25, 50, 75 100 and 200
ext_think_tme | 1 second

oby_io 35 milliseconds

obj_cpu 15 milliseconds

Table 2 Simulation Parameter Setungs

0O — blocking
90
T
h
r
60
o
u < PN
g
h30 -
P
un
t
T T T |
50 100 150 200

Multprogramming Level

Figure 5 Throughput (Infinite Resources)

blocking due to demal of lock requests and an increased
number of restarts due to deadlocks For the restart-
oriented strategies the higher probability of conflicts will
result in a larger number of restarts

Figure 5 shows the throughput results for Experiment
2 Blocking starts thrashing as the mulaprogrammng level
15 mncreased beyond a certain level whereas the throughput
keeps increasing for the opumustic algonthm These results
agree with predictons n [Fran83] that were based on simi-
lar assumptions Figure 6 shows the average number of
times that a transaction was blocked and restarted per com-
mut called the block ratio (dotted line) and the restart rauo
(sohd lines) for the three concurrency control algorithms
Note that the thrashing in blocking 15 due to the large
increase 1n the number of umes that a transaction 1s
blocked, which reduces the effectne muloprogramming
level rather than to an increase n the number of restarts
This result 1s 1n agreement with the assertton n [Balt82
Tay84a, Tay84b] that under low resource contention and a
high level of muluprogramming blocking may start thrash-
ing before restarts do Although the restart rato for the
opumistic algorithm increases quickly with an increase
the multiprogramming level new transactions start execut-
ing 1n place of the restarted ones, keeping the effective
multprogramming level high and thus entailing an increase
in throughput

Unhke the other two algorithms the throughput of the
immediate-restart algorithm reaches a plateau This hap-
pens for the following reason When a transaction 1s res-
tarted 1n the 1mmedate-restart strategy, a restart delay 1s
invoked to allow the conflicting transaction to complete
before the restarted transaction 1s placed back in the ready
queue The duration of the restart delay 1s exponenual with
a mean equal to the running average of the transaction
response time — that 1s the duration of the delay 1s adap-
nve depending on the observed average response hme We
chose to employ an adaptive delay after performing a sensi-

O — immedate-restart

A — optimistic

5 4

ja]
’
4 4 e
s
s
s
s
r s’
I

34 -,

a //
Id
s
t s
e

2 D/

1 -
~

° A A

Muluprogramming Level

Figure 6 Conflict Ratios (Infinite Resources)

Muluprogramming Level

Figure 7 Response Time (Infinite Resources)

tvity analysis that showed us that the performance of
immediate-restarts 1s sensitive to the restart delay ume par-
ticularly m the infinite resource case Our experiments
mdicated that a delay of about one transaction time 15 best
and that throughput begins to drop off rapidly when the
delay exceeds more than a few transacton tmes Because
of this adaptive delay then the immediate-restart algorithm
reaches a state where increasing the muluprogramming
level does not result in an actual increase in the number of
active transacnons — there are no transactons waiting in
the ready queue so increasing the allowed population has
no effect All of the non-actve transactions are either 1n a
terminal thinking state or a restart delay state

Figure 7 shows the mean response ume (sohd lines)
and the standard deviation of response tme (dotted lines)
for each of the three algonthms The response tmes are
basically what one would expect given the throughput

O — blocking

64
T
h
r4_‘
[
u o—% \§
g
h 27
P
u
t

¥ T T U

50 100 150 200

Muluprogramming Level
Figure 8 Throughput (1 CPU 2 Disks)

results plus the fact that we have employed a closed queu-
g model This figure does 1illustrate one interesting
phenomenon that occurred 1n nearly all of the experiments
reported m this paper The standard deviaton of the
response tme 1s smaller for blocking than for the
immedate-restart algorithm over most of the muluprogram-
ming levels explored — the response ume variance for the
immediate-restart algorithm s quite significant A high
variance 1n response time 1s undesirable from a user s
standpomnt

4 3 Experiment 3 Resource-Limited Sitvation

In Experiment 3 we analyzed the mmpact of fimite
resources on the performance characteristics of the three
concurrency control algorithms A database system with |
CPU and 2 disks was assumed for this experiment The
throughput results are presented in Figure 8

Observe that for all three algonthms as the mulupro-
gramming level 1s increased the throughput first increases
then reaches a peak and then finally either decreases or
remains roughly constant In a system with finite CPU and
1/0 resources the achievable throughput may be con-
stramed by one or more of the following factors It may be
that not enough transacuons are avatlable to keep the sys-
tem resources busy Alternanvely 1t may be that enough
transachons are available but because of data contention
the "useful” number of transacuons 1s less than what 1s
required to keep the resources "usefully” busy That 1s
transactions that are blocked due to lock confhcts are not
useful similarly the use of resources to process transac-
nons that are later restarted 1s not useful Finally 1t may
be that enough useful non-conflictng transactions are
available but that the available resources are already
saturated

As the muluprogramming level was increased the

throughput first increased for all three concurrency control
algonthms as there were not enough transacuons to keep

C — immedsate-restart

A — optimistic

T T T 1

50 100 150 200

Muluprogramming Level
Figure 9 Disk Utlizanon (1 CPU 2 Disks)

the resources utihzed at Jow levels of muluprogramming
Figure 9 shows the total (solid lines) and useful (dotted
lines) disk utihzatons for this experiment The useful uth-
zations 1ndicate the fraction of the resources used to do
work that actually completed (1 ¢ they exclude the fraction
used for work that was later undone by restarts) The utii-
zation of the disks 1s selected here because the disks are
the bottleneck resource with our parameter setings Note
the direct correlanon between the useful utihzation curves
of Figure 9 and the throughput curves of Figure 8 a trend
that 1s evident 1n all of the experiments reported here For
blocking the throughput peaks at mp/ = 25 where the
disks are bemng 97 2% uuhzed with a useful utihization of
92 1% Increasing the muluprogramming level further
only 1ncreases data contenuon and the throughput
decreases as the amount of blocking and the number of res-
tarts increase at a much faster rate For the optimistc
algorithm the useful utilization of the disks peaks at mp/ =
10 and the throughput decreases with an increase 1n the
muloprogramming level because of the increase n the res-
tart rabo This restart rato increase means that a larger
fraction of the disk time 1s spent on processing objects that
will be redone later For the immediate-restart algorithm

the throughput also peaks at mp/ = 10 and then decreases

remaiming roughly constant beyond 50 The throughput
remains constant for this algorithm for the same reason as
described 1n the last experiment — increasing the allowable
number of transactions has no effect beyond 50 as all of
the non-actine transactions are either thinking or i a res-
tart delay state

With regards to the throughput for the three strategies
several observatons are in order First the maximum
throughput (1 e the best global throughput) was obtained
with the blocking algorithm Second immediate-restarts
performed as well as or better than the opumistic algo-
rithm There were more restarts with the cpumistic algo-
rithm and each restart was more cxpensive this 1s

O — blocking

150

200

Muluprogramming Level
Figure 10 Response Time (1 CPU 2 Disks)

reflected in the relabve useful disk utiizatons for the two
strategies Finally the throughput achieved with the
immedhate-restart strategy for mpl/ = 200 was somewhat
better than the throughput achieved with erther blocking or
with the optimistic algorithm

Figure 10 gives the average and the standard deviation
of response ume for the three algorithms n the finite
resource case The differences are even more noticeable
than in the infinte case Blocking has the lowest delay
(fastest response time) over most of the muluprogramming
levels The immediate-restart algorithm 1s next and the
optmistic algorithm has the worst response time As for
the standard deviations blocking 1s the best immediate-
restarts 1s the worst and the opumistic algorithm is
between the two As in Experiment 1 the immedate-
restart algorithm exhibits a very high response time varn-
ance

One of the points raised earlier merits further discus-
sion Should the performance of the immediate-restart
algonithm at mpl 200 lead us to conclude that
immedate-restart 1s a better strategy at high levels of mul-
nprogramming? We believe that the answer is no for
several reasons First the multiprogramming level 1s
mternal to the database system, controlling the number of
transactions that may concurrently compete for data and
resources and has nothing to do with the number of users
that the database system may support, the latter 1s deter-
mined by the number of terminals Thus one should con-
figure the system to control the multiprogramming at a
level which gives the best performance In our
experiment the highest throughput and smallest standard
deviation of response time were achieved using the blocking
algorithm at mp/ = 50 Second the restart delav n the
immediate-restart strategy 1s there so that the conflicing
transaction can complete before the restarted transaction 1s
placed back into the readv queue However an unintended
side effect of this restart delav in a svstem with a finite

O — immediate-restart

115

A — optimistc

6
T
h
r
o 4 4
u &)
b e
A — A
]
h
2
P
u
t
T T T —
50 100 150 200
Muluprogramming Level
Figure 11 Throughput (Adaptive Delays)

number of users 1s that 1t imits the actual muluprogram-
ming level and hence also himits the number of confhcts
and resulung restarts due to reduced data contention
Although the multprogramming level was increased to the
total number of users (200) the actual average mulupro-
grammung level never exceeded about 60 Thus the restart
delay provides a crude mechamsm for hmiung the mul-
uprogramming level when restarts become overlv frequent
and adding a restart delay to the other two algonthms
should improve their performance at high levels of mul-
uprogramming as well

To venfy this latter argument we performed another
experiment where the adaptuive restart delay was used for
restarted transactons 1 both the blocking and optimistic
algornithms as well The throughput results that we
obtained are shown 1n Figure 11 It can be seen that intro-
ducing an adaptive restart delay helped to hnmt the mul-
tprogramming level for the blocking and optimisuc algo-
rithms under high conflicts as 1t does for immedate-
restarts reducing data contention at the upper end of the
curves Blocking emerges as the clear winner and the
performance of the opumistic algorithm becomes compar-
able to the immediate-restart strategy The one negative
effect that we observed from adding this delay was an
mcrease n the standard deviation of the response times for
the blocking and optimistic algorithms Since a restart
delay only helps performance for high muluprogramming
levels 1t seems that a better strategy 1s to enforce a lower
multprogramming level hmit to avoid thrashing due to high
contention and to mamntain a small standard deviation of
response tme

44 Expermment 4 Multiple Resources

In this experiment we moved the system from finite
resources towards infinite resources We increased the
number of resources available to 10 CPUs and 20 disks and
then to 25 CPUs and 50 disks to determine where finite

0 — blocking

T T T

50 100 150 200

Muluprogramming Level

Figure 12 Throughput (10 CPUs 20 Disks)

100 150 200

Muluprogramming Level

Figure 14 Throughput (25 CPUs 50 Disks)

resources start behaving hke infinite resources 1in a mul-
tiprocessor database machine environment

For 10 CPUs and 20 disks the behavior of the three
concurrency control strategies was fairly similar to the
behavior in the case of 1 CPU and 2 disks The
throughput results for this case are shown in Figure 12
and the disk uuhzaton figures for this case are given mn
Figure 13 Blocking again provided the highest overall
throughput For large muluprogramming levels however
the mmmediate-restart strategy provided better throughput
than blocking but not enough to beat the highest
throughput provided by the blocking algorithm In this
resource configurauon the maximum useful utihzations of
the disks with the blocking immedate-restarts and the
opunnstic algonthm were 55 5% 44 6% and 46 6%
respectvely whereas the maximum total disk utilizations

O — immedate-restart

116

A — optimistic

50 100 150 200
Muluprogramming Level
Figure 13 Disk Unhzaton (10 CPUs, 20 Disks)
104
U
t
__—
|
\ 06
z
a 04 -l o © I —©
¢ A~ A~ - _ A
=z "g -2 O — - = -0
' 02 8= —D
/ =
N ---0
n
50 100 150 200
Muluprogramming Level
Figure 15 Disk Uthzation (25 CPUs 50 Disks)
were 61 8% 72 6% and 94 1% Note that due to res-

tarts the total utilizanons for the restart-oriented algorithms
are higher than those for blocking the difference 1s par-
tally due to wasted resources By “wasted resources”
here we mean resources used to process objects that were
later undone due to restarts — these resources are wasted
in the sense that they were consumed making them una-
vailable for other purposes such as background tasks

For 25 CPUs and 50 disks the maximum throughput
obtained with the optimistic algorithm beats the maximum
throughput obtained with blocking (although not by very
much) The throughput results for this case are shown 1n
Figure 14 and the utilizabons are given in Figure 15 The
total and the useful disk utihzations for the maximum
throughput point for blocking were 33 5% and 30 1%
(respectively) whereas the corresponding numbers for the

optimustic algorithm were 62 6% and 32 6% Thus the
opumistic algorithm has become attracuve because a large
amount of otherwise unused resources are available and
thus the resources wasted due to restarts does not adversely
affect performance 1In other words with useful utthzations
m the 30% range the system begins to behave somewhat
like 1t has mnfinite resources

Another mteresing observaton from these results 1s
that with blocking resource utlizaton decreases as the
level of muluprogramming increases and hence throughput
decreases This 1s a further indication that blocking may
thrash due to waiting for locks before 1t thrashes due to the
number of restarts [Balt82 Tay84a Tay84b} as we saw in
the infinite resource case On the other hand with the
optmistic algorithm as the multprogramming level
increases the total unlization of resources and resource
waste mcreases and the throughput decreases somewhat
Thus this strategy eventually thrashes due to the number
of restarts (1e because of resources) With immedate-
restarts as explained earher a plateau 1s reached for
throughput and resource utilization because the actual mul-
tiprogramming level 1s hmited by the restart delay under
high data contention

4 5 Experiment 5 Interactive Workloads

In our last experiment we modeled interactive tran-
sactions that perform a number of reads think for some
period of ume and then perform theirr writes This model
of interactive transactions was motivated by a large bodv of
form-screen applicauons where data 1s put up on the
screen the user mav change some of the fields after staring
at the screen for a while and then the user types "enter”
causing the updates to be performed The intent of this
experiment was to find out whether large intra-transaction
— mternal — think tbmes can cause a system with finite
resources 10 behave like 1t has nfinite resources The
mteractive workload experiment was performed for internal
think umes of 1 5 and 10 seconds At the same ume the
external think umes were increased to 3 11 and 21
seconds (respectivelv) in order to keep roughly the same
rano of thinking transacuons to active transactions We
have assumed a finite resource environment with 1 CPU
and 2 disks for the system n this experiment

Figure pairs (16 17) (18 19) and (20 21) show the
throughput and disk utihizanons obtained for the 1 5 and
10 second nter-transaction think time experiments (respec-
tively) On the average a transaction requires 150 mil-
liseconds of CPU ume and 350 milhseconds of disk tme
so mternal think umes of 1 5 and 10 seconds thus consid-
erably increase the duration for which a locks are held
This causes the resource utilization for blocking to decrease
as the internal think ume increases With the optmisuc
algonthm the demand for resources 1s also reduced due to
large think tmes and the resources start behaving as
though they were nfimite resources Consequently for
large think tmes the optumistic algorithm performs better
than the blocking strategy (see Figures 18 and 20) For an
internal think tme of 21 seconds the useful unhzation of
resources 1s much higher with the optimsstic algorithm than

117

the blocking strategy and the highest throughput value 1s
also considerably higher For 5 seconds of internal think
time the throughput and the useful uthizauon with the
optmustic algorithm 1s also better than for blocking For a
I second internal think asme however blocking performs
better (see Figure 16) The resource uulizatons here are
such that wasted resources due to restarts makes the
opumistc algorithm the loser

The highest throughput obtaned with the opumistc
algorithm was consistently better than that for immedate-
restarts although for higher levels of muluprogramming
the throughput obtained with immediate-restarts was betier
than the throughput obtained with the opumistic algorithm
due to the mulaprogramming-limiting effect of immediate-
restart s restart delay As noted before this high multpro-
gramming level difference could be reversed by adding a
restart delay to the opumistic algorithm

5 CONCLUSIONS AND IMPLICATIONS

One major conclusion of this study 1s that for medium
to high levels of resource utilization a blocking algorithm
hike dynamic two-phase locking 1s a better choice than a
restart-oriented concurrency control like the immedate-
restart or opumistic algorithms However 1f resource utih-
zatons are sufficiently low that a large amount of wasted
resources can be tolerated and 1n addinen there are a large
number of transactions available to execute then a restart-
oriented algorithm 1s a better choice We found the
optimistic algorithm to be the best choice under these con-
ditons Such low resource utihzations could arise in a
database machine with a large number of CPUs and disks
and a number of termunals similar to what one finds 1n typ-
ical umesharing systems today Thev could also arise 1n
primanily interactive apphcations where very large think
times occur and the number of termmals 1s such that the
utihization of the system 1s low as a result It 15 an open
question whether or not such low uulizavons could really
occur 1 real systems If not blocking algorithms will
remain the preferred method for database concurrency con-
trol

Another result of this study 1s that we have re-
confirmed results from a number of other studies nclud-
ing those reported 1n [Balt82 Agra83a Agra83b Care83a
Care84 Fran83 TayB4a Tay84b] We have shown that
seemingly contradictory resuilts some of which favor block-
ing algonthms and others of which favor restarts are not
contradictory at all The studies are all correct within the
Iimuts of their assumptions parucularly their assumptions
about system resources While 1t 1s possible to study the
effects of data contenton and resource contention
separately in some models [Tay84a Tay84b] 1t appears not
to be worth doing so if the goal 1s to select a concurrency
control algorithm for a real system — the proper algorithm
choice 15 resource-dependent

An interesuing side result of this study 1s that the level
of muluprogramming in database systems should be care-
fully controlled We refer here to the multiprogramming
level internal to the database system controlling the
number of transactions that may concurrently compete for

0 — blocking

°

T T T u

50 100 150 200

#

—

Muluprogramming Level

Figure 16 Throughput (1 Second Internal Thinking)

3

—©
24
|

T T T 1

50 100 150 200

Muluprogramming Level

Figure 18 Throughput (5 Seconds Internal Thinking)

T
3
n ol
r
[}
2
1)
g ———0 ~—0
h
I 4
P
u
T) By 1
50 100 150 200

Muluprogrammung Level

Figure 20 Throughput (10 Seconds Internal Thinking)

O — immecdate-restart

A — optimistic

10-1

(=]
oo
1

06+

044

ozﬂ
o

50 100 150 200
Muluprogramming Level

Figure 17 Disk Utihzation (1 Second Internal Thinking)

50 100 150 200

Muluprogramming Leve)

Figure 19 Disk Unhzabon (5 Seconds Internal Thinking)

10 A N
A
U
t
08
1
1
. 06 4
z
a 04 4
t
! 024
P S I
n
T T T 1
50 100 150 200
Muluprogramming Level
Figure 21 Disk Uthzanon (10 Seconds Internal Thinking)

data, CPU and 1/O services As m the case of paging
operatng systems if the muluprogramming level 1s
increased beyond a certain level the blocking and opumis-
tic concurrency control strategies start thrashing We have
confirmed the results of [Bali82, Fran83 Tay84a, Tay84b]
for locking 1n the low resource contention case but more
importantly we have also seen that the effect can be signifi-
cant for both locking and opumustic concurrency control
under higher levels of resource contention We found that
when we delayed restarted transactions by an amount equal
to the running average response me 1t had the beneficial
side effect of hmiting the actual mulbprogramming level
and the degradation in throughput was arrested (albeit a ht-
tle bit late) Since the use of a restart delav to it the
multprogramming level 1s at best a crude strategy adapuve
algorithms that dynamically adjust the multiprogramming
level 1n order to maximize system throughput need to be
designed Some performance indicators that might be used
mn the design of such an algorithm are useful resource utili-
zation, running averages of throughput or response time
etc The design of such adaptive algorithms 1s an open
problem

In closing we wish to leave the reader with the fol-
lowing thoughts about the future, due to Bill Wulf
[Wulf81]

"Although the hardware costs will continue to fall
dramatically and machine speeds will increase equal-
ly dramancallx we must assume that our aspirations
will rise even more Because of this, we are not about
to face ewther a cvcle or memory surplus For the
near-term future the dominant effect will not be
machine cost or speed alone but rather a contnuing
attempt to increase the return from a finite resource
— that 1s a particular computer at our disposal "

ACKNOWLEDGEMENTS

The authors wish to acknowledge helpful discussions
that one or more of us have had with Mary Vernon Nat
Goodman and (especially) Y C Tay Comments from
Rudd Canaday on an earher version of this paper helped us
to improve the presentaton The NSF-sponsored Crystal
muliicomputer project at the Umiversity of Wisconsin pro-
vided the many VAX 11/750 CPU-hours that were required
for this study

REFERENCES

{Agra83a) Agrawal R and DeWit D Integrated
Concurrencv Control and Recovery Mechan-
tsms Design and Performance FEvaluation
Technical Report No 497 Computer Sci-
ences Department University of Wisconsin-

Madison February 1983

119

[Agra83b]

[Bada79]

[Balt82]

[Bern80a}

{Bern80bj

[Bern81}

[Bern82]

[Care83a]

[Care83b]

jCare84]

[Casa79]

Agrawal, R Concurrency Control and
Recovery in Muluprocessor Database
Machines Design and Performance Evalua-
non Ph D Thesss Computer Sciences
Department University of Wisconsin-
Madison 1983

Badal D ‘Correctness of Concurrency

Control and Imphcations 1n Distributed Data-

bases Proceedings of the COMPSAC '79
Conference Chicago Ilhnois, November
1979

R Balter P Berard and P Decitre ‘‘Why
Control of the Concurrency Level i Distri-
buted Systems 1s More Fundamental than
Deadlock Management Proceedings of the
First ACM SIGACT-SIGOPS Svmposium on
Principles of Distributed Computing August
1982

Bernsten P and Goodman N Fundamen-
tal Algorithms for Concurrency Control in Dis-
tributed Database Svstems Technical Report
Computer Corporation of America 1980

Bernstein P, and Goodman N
Timestamp-Based Algorithms for Con-
currency Control 1n Distnibuted Database
Systems Proceedings of the Sixth Interna-
nonal Conference on Very Large Data Bases
October 1980

Bernstetn P and Goodman N Con-
currency Control m Distributed Database
Systems ACM Compunng Survevs 13(2)
June 1981

Bernstem P and Goodman N “A
Sophisticate s Introduction to Distributed
Database Concurrency Control Proceedings
of the Eighth Internanonal Conference on Ven
Large Data Bases September 1982

Carey M Modeling and Evaluanon of Data-
base Concurrency Control Algorithms Ph D
Thesis Computer Science Division (EECS)

University of Califormia Berkeley Sep-
tember 1983
Carey M ‘‘An Abstract Model of Database

Concurrency Control Algorithms Proceed-
ings of the ACM SIGMOD International
Conference on Management of Data San Jose
California May 1983

Carey, M | and Stonebraker M ‘The Per-
formance of Concurrency Control Algorithms
for Database Management Systems
Proceedings of the Tenth International Confer-
ence on Very Large Data Bases Singapore
August 1984

Casanova M The Concurrency Control
Problem for Database Systems Ph D Thesis,
Computer Science Department, Harvard
Umiversity 1979

|Cer182})

|Fran83]

[Gall82]

{Good83}]

[Gray79]

|Gray81]

[Iran79]

[Kung8l1]

|Lin82a)

{Lin82b]

[Lin83]

[Lind79]

Cen S and Owicki S *‘On the Use of
Opumistic Methods for Concurrency Control
n Distributed Databases Proceedings of the
Sixth Berkelex Workshop on Distributed Data
Management and Computer Nemorks Febru-
ary 1982

Franaszek P and Robinson J Linutations
of Concurrency in Tiansaction Processing
Report No RCI10151 IBM Thomas J Wat-
son Research Center August 1983

Galler B Concurrency Control Performance
Issues Ph D Thesis Computer Science
Department University of Toronto Sep-
tember 1982

Goodman N Suri R and Tay Y A
Simple Analytic Model for Performance of
Exclusive Locking in Database Systems
Proceedings of the Second ACM SIGACT-
SIGMOD Svmposium on Principles of Database
Svstems Atlanta Georgia March 1983

Gray J ‘Notes On Database Operatng
Systems 1 Operanng Svsiems An Advanced
Course Springer-Verlag 1979

Gray J] Homan P Korth H and Ober-
marck R 4 Straw Man 4nalsis of the Pro-
babilin of Wainng and Deadlock i a Database
Svstem Techmcal Report No R13066 1BM

San Jose Research Laboratory February
1981
Iram K and Lin H Queuing Network

Models for Concurrent Transaction Process-
ing i a Database System Proceedings of
the ACM-SIGMOD Internanonal Conference on
Management of Data 1979

Kung, H and Robinson } *‘On Optmistic
Methods for Concurrency Control ACM
Transactions on Database Svstems 6(2) June
1981

Lin W and Nolte } Distributed Database
Control and Allocanon Semi-Annual Report
Technical Report Computer Corporation of
America Cambnidge Massachusetts Janu-
ary 1982

Lin W and Nolte J ‘ Performance of
Two Phase Locking Proceedings of the
Sixth Berkelex Workshop on Dustributed Data
Management and Computer Networks Febiu-
an 1982

Lin W and Nolte J ‘‘Basic Timestamp
Mulupie Version Timestamp and Two-Phase
Locking Proceedings of the Ninth Interna-
tional Conference on Verv Large Data Bases
Florence Italy November 1983

Lindsay B etal Notes on Distributed Data-
bases Report No RIJ2571 IBM San lose
Research Laboratory 1979

120

[Mena78]

|Pein83]

[Pou80]

[Reed78]

|Reut83]

[Ries77]

[Ries79a}

|R1es79b]

[Rob182a}

[Robi82b]

|Rose78}

|Sarg76]

|Spit76])

Menasce D and Muntz R “‘*Locking and
Deadlock Detecion 1n Distributed Data-
bases Proceedings of the Third Berkeler
Workshop on Dustributed Data Management
and Computer Networks August 1978

Peinl P and Reuter A Empirical Com-
parison of Database Concurrency Control
Schemes Proceedings of the Ninth Interna-
tional Conference on Ven Large Databases
1983

Poner D and LeBlanc P Analysis of
Locking Policies 1in Database Management
Systems Communicatnions of the ACM
23(10) October 1980

Reed D Namung and Svinchronization n a
Decentralized Computer Svstem Ph D
Thesis Department of Electrical Engineering
and Computer Science Massachusetts Insti-
tute of Technology 1978

Reuter A An Anahnc Model of Transaction
Interference in Database Sistems 1B 68/83
Umversity of Kaiserslautern West Germany
1983

Ries D and Stonebraker M Effects of
Locking Granularity on Database Manage-
ment System Performance ACM Transac-
tions on Database Systems 2(3) September
1977

Ries D The Effects of Concurrency Conirol
on Database Manogement S\stem Performance
Ph D Thesis Department of Electrical
Engineering and Computer Science Univer-
sity of Cahforma at Berkeley 1979

Ries D and Stonebraker M Locking
Granulanty Revisited ~ ACM Transacnons on
Database Systems 4(2) June 1979

Robinson J Design of Concurrency Controls
for Transaction Processing Svstems Ph D
Thests Department of Computer Science
Carnegie-Mellon Unnersity 1982

Robinson J Experiments with Transaction
Processing on a Mulu-Microprocessor Report
No RC9725 IBM Thomas J Watson
Research Center December 1982

Rosenkrantz D Stearns R and Lews
P System Level Concurrency Control for

Distributed Database Systems ACM Tran-
sactions on Database Sistems 3(2) June
1978

Sargent R Statistical Analysis of Simula-

ton Output Data Proceedings of the Fourth
Annual Svmposium on the Suimulanon of Com-
puter S\stems August 1976

Spizer] Performance Prototyping of
Data Management Applications Proceed-
ings of the ACM 76 Annual Conference
October 1976

[Ston79]

| Tay84a]

[Tay84b]

[Thom79])

[Thom83]

[Wulf81]

Stonebraker M ‘‘Concurrency Control and
Consistency of Muluple Copres of Data n
Distributed INGRES IEEE Transactions on
Software Engineering 5(3) May 1979

Tay Y A Mean Value Performance Model
for Locking in Databases, Ph D Thesis
Computer Science Department Harvard
University February 1984

Tay Y, and Sur,, R ‘ Choice and Perfor-
mance in Locking for Databases’ Proceed-
ings of the Tenth International Conference on
Very Large Data Bases Singapore August
1984

Thomas R *“A Majority Consensus
Approach to Concurrencv Control for Mult-
ple Copy Databases = ACM Tiansactions on
Database Srstems 4(2) June 1979

Thomasian A and Ryu 1 ‘A Decomposi-
tion Solunon to the Queuing Network Model
of the Centralized DBMS with Stauc Lock-
ing Proceedings of the ACM-SIGMETRICS
Conference on Measurement and Modeling of
Computer Svstems Minneapolis MN, August
1983

Wulf W ‘Compilers and Computer Archi-
tecure [EEE Computer July 1981

121

