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.4BSTRACT 

A number of recent studies hale exammed the performance 
of concurrent\ control algorithms for database manage- 
ment s\stems The results reported to date rather than 
bemg defimove ha\e tended to be contradIctor> In 011s 
paper rather than presenting “yet another algorithm per- 
formance stud)” we crlbcally mvesngate the assumwons 
made m the models used m past studies and their Imphca- 
tlons We employ a “complete” model of a database 
emlronment to study the relatn~e performance of three dlf- 
ferent approaches to the concurrency control problem 
under a \arleb of modehng assumptions We shon how 
differences m the underlymg assumpnons explam the seem- 
mgl\ contradlctorq performance results We also examine 
how reahsnc the various assumptions would be for “real” 
database sqqtems 

1 IWRODUCTION 
Research m the area of concurrency control for data- 

base systems has led to the development of many con- 
currenck control algorithms Most of these algorithms are 
based on one of three basrc mechamsms lodmg [Mena 
Rose78 Graj79 Lmd79 Ston79] rrmestamps [Reed78 
Thorn79 BernSOb] and oprnrsru concurrency control 
(also called commit-hme \ahdabon or certdicanon) 
IBada79 Casa79 Kung81 Cer182] Bernstem and Good- 
man [Bern81 Bern821 sur\ey manv of the algorithms that 
hate been developed and describe how nea algorithms ma) 
be created b\ combmmg the three basic mechanisms 
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Gl\en the e\er-growmg number of atallable con- 
current) control algorithms conslderable research has 
recently been deleted to elaluatmg the performance of the 
barlous concurrency control algorithms The beha\lor of 
lockmg has been mbesngated usmg both slmulatlon 
[Spit76 Rles77 Rles79a Rles79b Balt82 Lm82bl and 
analyacal models [ Iran79 Pot180 Gracll Good83 
Reut83 Thorn83 Tal84a Ta\84b] A quahtatne stud) 
that chstussed performance ISsues for a number of dlstrl- 
buted locking and omestamp algorithms was presented m 
(BernSOa] and an emplrrcal comparison of ceveral con- 
currency control schemes uas gl\en m I Pem83] 
Recentlq the performance of different concurrency control 
mechamsms habe been compared m a number of slmula- 
non studies The performance of lockmg was compared 
with the performance of basrc nmestamp ordermg m 
IGall and with basic and mulhverslon nmestamp order- 
mg m [ Lm83] The performance of several alternanves for 
handlmg deadloch m lockl?g algorithms was studled m 
IBaIt Results of experiments comparmg lockmg to the 
optlmlsnc method appeared m IRob182a Rob182b] and the 
performance of several carlants of lockmg basic timestamp 
ordermg and the opnmlstuz method were compared m 
ICare83a Care841 Fmallq the performance of several 
Integrated concurrent) control and recover) algorithms 
were evaluated m IAgra83a Agra83b] 

These performance studies are mformanbe but the 
results that hale emerged Instead of bemg definmve have 
been very contradIctor\ For example studies b\ Care\ 
and Stonebraher ICare and Agrawal and DeWm 
IAgra83al suggest that an algorithm that uses blockmg 
Instead of restarts IS preferable trom a performance 
vlewpomt but studies bl Ta) ITak84a Ta\84b] and Baiter 
et al IBait suggest that restarts lead to better perfor- 
mance than blochmg Optimlsuc methods outperformed 
lockmg m IFran whereac the opposite results were 
reported in IAgra83b Care83aJ Results reported m 
IGall82j regardmg lockmg versus basic umestamp ordermg 
contradict those of ILm83] ’ 

’ Tins last example ulll not be addressed further m ttw paper 



Each of the previous studies employed a different per- 
formance model and several of the studies were based on 
assumptions that have no clear phvslcal meanmg In this 

paper instead of presentmg “bet another performance 
study * we address the assumphons made m the models 
used m past studies and their Implications We begm by 
estabhshmg a framework based on a complete and (we 
believe) “reahsnc” model of a database management sys- 
tem Our model captures all the main elements of a data- 
base environment mcludmg both users (I e termmals the 
source of transacbons) and phwcal resources for stormg 
and processing the data (I e disks and CPUs) m addition 
to the usual model components (workload and database 
characteristics) Based on this framework we show how 
differences m assumpnons explam the apparently contradlc- 
tory performance results from the previous stu&es We 
also examine what assumptions are reasonable for real sys- 
tems and how more reahsbc assumpuons would have 
altered the conclusions of several of the earlier studies 

In parncular we cribcally examine the common 
assumpuon of rnjntte resources A number of anal?tlcal 
studies (for example IFran Tal84a Ta784b]) and 
simulabon studies (for example (Lm82b Lm83j) compare 
concurrency control algorithms under the assumption that 
transactions progress at a rate independent of the number 
of concurrent transactions In other words theq proceed 
m parallel rather than m an interleaved manner ThlS IS 

only reallq possible m a system with enough resources so 
that transachons neter have to wsut for CPU or l/O Service 
- hence our choice of the phrase “mfinrte resources” 
We will m\esugate thus assumption by performing studies 
with trul\ infinite resources with multiple CPU-I/O de\- 
ices and wrth transactlons that thmk while holdmg locks 
The infinite resource case represents an “Ideal” system the 
mulhple CPU-I/O device case models a class of mulhpro- 
cessor database machines and having transactions thmk 
while executmg models an mteracuve workload 

We examine three concurrency control algorithms in 
this study two lockmg algorithms and an opbmlsbc algo- 
nthm, which differ as to when and how they detect and 
resolve confhcts Section 2 describes our choice of con- 
currency control algorithms We use a simulator based on 
a closed queuing model of a smgle-site database system for 
our performance studies The structure and characteristics 
of thus simulator are described in Section 3 Section 4 
presents the performance experiments and our results In 
Section 5 we summarize the mam conclusions of our study 

2 CONCURRENCY CONTROL STRATEGIES 

A transaction T IS a sequence of acuons (al a2 
an} where a, IS either read or write Given a concurrent 
execution of transactions action a, of transacnon T, and 
acnon a of T confrrcr If they access the same obJect and 
either (I 4 a, Is’read and a IS write or (II) a IS write and a 
IS read or write The Jarrous concurren& control algo! 
rlthms basIcall> differ m the time when the\ drrect CO~I~IC?S 
and the wa\ that they resolve conjrcts IBern 1 For thus 
studc we have chosen to examme three concurrency control 

algorithms that represent extremes m conflict detection and 
resolution 

BlocXq Transacbons set read locks on objects that 
the\ read and these locks are later upgraded to write locks 
for objects which they also write If a loch request IS 

demed the requestmg transaction IS blocked A waits-for 
graph of transacnons IS maintained ]Gra!79] and deadlock 
detecnon IS performed each time a transaction blocks If a 
deadlock IS discovered the youngest transacuon m the 
deadlock cycle IS chosen as the vlcbm and restarted 
Dynamic two-phase lockmg ]Gray79] IS an example of this 

strategy 
Immedrate-Restart As m the case of blockmg transac- 

tions read-lock the ObJects that they read and they later 
upgrade these locks to write locks for ob’ects which they 
also write However If a lock request IS denied the 
requesbng transachon IS aborted and restarted after a restart 
delay The delay period which should be on the order of 
the expected response bme of a transactjon prevents the 
same conflict from re-occurring repeatedly A concurrency 
control strategy slmllar to this was considered m ]Tay84a 
Tay84b J 

Opttmcstx Transactions are allowed to execute unhm- 
dered and are validated only after they have reached their 
commit points A transachon is restarted at its commit 
point If It finds that any obJect that It read has been written 
by another bansaction which committed during its hfetlme 
The opbmisbc method proposed bq hung and Robinson 
]Kung8l] IS based on this strateg\ 

These algornhms represent two extremes with respect 
to when confhcts are detected The blocking and 
Immediate-restart algorithms are based on dynamic lockmg 
so confhcts are detected as the) occur The opnmlsnc algo- 
rithm on the other hand does not detect conflicts untd 
transacuon commit time The three algorithms also 
represent two different extremes with respect to conflict 
resolution The blochmg algorithm blocks transacbons to 
resolve conflrcts restarting them onlc when necessar? 
because of a deadlock The Immediate-restart and opumis- 
tic algorrthms always use restarts to resohe conflicts 

One final note m regard to the three algorithms In 
the Immediate-restart algorithm a restarted transacnon 
must be delayed for some time to allow the conflicting tran- 
sacDon to complete otherwise the same lock conflict will 
occur repeatedl) For the ophmlstic algorithm It IS 
unnecessary to delal the restarted transacbon as anv 
detected conflict IS with an already commmed transaction 
A restart delah IS also unnecessary for the blocking algo- 
rithm as the same deadlock cannot arise repeatedly 

3 SlMULATiON MODEL 
Central to our simulator for studying concurrency 

control algorithm performance IS the closed queumg model 
of a single-site database system shown m Figure I This 
model IS an extended version of the model used m 
[Care83a Care841 \shlch m turn had its origins in the 
model of ]Rles77 Rles79a Rles79b] There are a fixed 
number of tetmmals from which transactions originate 
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Figure I Log& Queumg Model 

There IS a hmlt to the number of transactions allowed to be 
achve at an) ome m the system the mulhprogrammmg 
level mpl A transacnon IS consldered active If It IS either 
recelvmg service or watmg for service mslde the database 
system When a new transaction orrgmates If the system 
already has a full set of active transachons It enters the 
readv queue where It waits for a currently active transaction 
to complete or abort (transacbons m the ready queue are 
not considered acttve) The transaction then enters the cc 
queue (concurrency control queue) and makes the first of 
its concurrency con@01 requests If the concurrency con- 
trol request IS granted the transacbon proceeds to the 
objecf queue and accesses its first ObJect ff more than one 
object IS to be accessed prior to the next concurrency con- 
trol request the transacbon ~111 cycle through this queue 
several hmes When the next concurrency control request 
IS required the transaction re-enters the concurrency con- 
trol queue and makes the request It IS assumed for model- 
mg convemence that a transacbon performs all of Its reads 
before performmg any writes In one of the performance 
studies later In the paper we examme the performance of 
concurrency control algorithms under Interactive work- 
loads The thmb path m the model provides an optlonal 
random delay that follows object accesses for this purpose 

2 The simulator mamtams backup copies of transactIon read and 
write sets 

More ~111 be sad about modeling Interactive transacuons 
short11 

If the result of a concurrency control request IS that 
the transacnon must bloch It enters the blocAed queue until 
It 1s once agam able to proceed If a request leads to a 
declslon to restart the transaction II goes to the back of the 
ready queue posslblj after a randomly determined restart 
delay period of mean reszartde/o\ (as In the Immediate- 
restart algorithm) It then begins mahmg all of the same 
concurrency control requests and obJect accesses over 
agam ’ Eventuallv the transaction ma) complete and the 
concurrency control algorithm may choose to commit the 
transactlon If the transactton IS read-onl) It IS finished 
If It has wrltten one or more objects during its execution 
however It first enters the update queue and writes its 
deferred updates mto the database Deferred updates are 
assumed here because our slmulatlon framework IS 

Intended to support an\ concurrency control algorithm - 
all algorithms operate correctly with deferred updates but 
not all algorithms work with recovery schemes that do m- 
place updates 

To further Illustrate how transachons flow through the 
model we brlefly describe how the locking algorithms and 
the opfimlsbc algorithm are modeled For lockmg each 
concurrency control request corresponds to a lock request 
for an ObJect and these requests alternate with ObJect 
accesses Locks are released together at end-of-transaction 
(after the deferred updates have been performed) Walt 
queues for locks and a watts-for graph are mamtamed by 
an algorithm--specific pornon of the simulator For optlmls- 
tic concurrency control the first concurrency control 
request IS granted lmmedlately (I e it IS a “no-op”) all 
ObJect accesses are then performed with no intervening 
concurrency control requests Only after the last object 
access IS fimshed does a transachon return to the 
concurrency control queue m the optimlsbc case at which 
nme Its vahdatlon test IS performed (followed If successful 
by its deferred updates) 

Underlymg the loglcal model of Figure 1 are two phy- 
slcal resources the CPU and the I/O (I e disk) resources 
Associated with the concurrency control object access and 
deferred update serllces m Figure I are some use of one or 
both of these two resources The amounts of CPU and I/O 
bme per loglcal service are specified as slmulauon parame- 
ters The phjslcal queumg model IS depjcted m Figure 2 
and Table I summarizes Its associated slmulabon 
parameters As shown the physical model IS a collechon 
of termmals multiple CPU servers and mulnple I/O 
servers The delay paths for the think and restart delays 
are also reflected m the physlcal queumg model Slmula- 
tlon parameters specify the number of CPU servers the 
number of l/O servers and the number of terminals for 
the model When a transaction needs CPU service It IS 
asslgned a free CPU server, otherwise the transaction wants 
unnl one becomes free Thus the CPU servers ma) be 
thought of as bemg a pool of servers all Idenbcal and serv- 
mg one global CPU queue Requests m the CPU queue 
are ser\lced FCFS (first-come first-served) except that 
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Figure 2 Physical Queuing Model 

concurrent\ control requests hate prIorIt\ ocer all other 
serbice requests Our Ii0 model IS that of a partltroned 
database where the data m the database IS spread out 
across all of the disks There IS a queue associated ulth 
each of the I/O servers When a transacnon needs serklce 
It chooses a disk (at random with all disks bemg equall) 
Ilkelk) and waits m an 1/O queue associated with the 
selected dish The service dlsclphne for the 110 queues IS 
also FCFS 

The parameters obj-to and obJ-cpu are the amounts of 
I/O and CPU time associated W&I readmg or wrlhng an 
obJect Readmg an object takes resources equal to obJ-to 
followed by obj-CpU Wrlhng an object takes resources 
equal to obj-cpu at the Dme of the write request and obJ-co 
at deferred update hme as It IS assumed that bansachons 
mamtam deferred update hsts m buffers In mam memory 
These parameters represent constant service time require- 
ments rather than stochasnc ones for slmphc@ The 
e\tlh&.-nrne parameter IS the mean of an exponenDal hme 
dlstrlbubon which determmes the time delay between the 
complebon of a transacuon and the mltlatjon of a new tran- 
saction from a termmal Fmall) the rrrtr/nrlhrrme param- 
eter IS the mean of an exponential time dlstrlbutlon which 
determmes the mtra-transaction thmh time for the model (If 
any) To model mteracuve workloads transactions can be 
made to undergo d thmkmg period between fimshmg their 
reads and startmg their writes 

A transactjon IS modeled according to the number of 
obJectc that it reads and writes The parameter rratLstze IS 

Parameter Meanmg 
db-size number of obJects In database 
tran-srzr 
ttUZLSlZC 
mm-we 
wrrte-prob 
restart-delaj 
num-ret ms 
mpl 
e~Lthttth-ttttw 
tnttlmh.rtttte 
objm.ro 
objmcpu 
nut?lcpus 
ttutt~drsls 

mean size of transacbon 
size of largest transacnon 
size of smallest transacnon 
Pr(wrlte X 1 read X) 
mean transactlon restart delay 
number of termmals 
multiprogramming level 
mean time between transactions 
mean mtra-transacnon think time 
I/O hme for accessmg an ObJect 
CPU hme for accessmg an ObJeCt 
number of cpus 
number of disks 

Table I Simulation Parameters 

the average number of objects read by a transachon the 
mean of a umform dlstrlbubon between MlLslze and 
I)zcL*sIze (mcluslve) These objects are randomly chosen 
(without replacement) from among all of the ObJectsi In the 
database The probability that an object read by a transac- 
hon ~111 also be written IS determined by the parameter 
trrtreprob The size of the database IS assumed to be 
db- stze 

The reader may have noted the absence of exphclt 
concurrency control cost parameters We assume for the 
purpose ot this study that the cost of performmg con- 
currency control operahons IS neghglble compared to the 
cost of accessing objects It has been shown elsewhere that 
the concurrenct control request processing costs for algo- 
rithms based on lockmg and ophmlshc methods are roughly 
comparable ICare83bj the mam difference being the hmes 
at which these costs are Incurred so this assumption 
should not bias our results 

4 PERFORMANCE EXPERIMENTS 
We performed a number of slmulatlon experiments to 

study the lmphcahons of different assumpbons on the per- 
formance of the three concurrency control algorithms 
described m Secbon 3 We first examined the performance 
of the three strategies in the case of very low conflicts We 
then mvesbgated the performance under the mfmlte 
resources assumpcron with hmlted resources and with 
multiple CPUs and disks Last ue examined the case Of 
an Interactike workload 

Table 2 gives the stmulatlon parameter values used for 
the experiments reported here (except where otherwise 
noted) The parameters that car) from experiment to 
experiment are not hsted In the table but wdl Instead be 
given m the descrlptlon of the experiments The database 
and transaction sizes were selected so as to lomtlq yield E 
region of okration which allous the mteresbng perfor- 
mance effects to be observed ulthout necesqnatmg impossi- 
bly long slmulatlon times These sizes are expressed in 
pages as we equate objects and pages In 0-11s stud\ The 
multlproglammmg level IS \arred between a hmn of 5 tran- 
sactlons and a lrmlt of the total number of termmals set to 
200 m this stud\ to allon a range of confhct probabihues 
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Figure 3 Throughput (Infinite Resources) 

to be mvestlgated The object processmg costs were chosen 
based on our notion of roughly what realistic values might 
be We employed a modified form of the batch means 
method [Sarg76] for our stahsbcal data analyses and each 
emulation was run for 20 batches with a large batch hme 
to produce sufficiently bght 90% confidence mtervals 3 The 
actual batch bme varied from experiment to experiment, 
but the throughput confidence Intervals were typically m 
the range of plus or minus a few percent of the mean 
value more than sufficient for our purposes We discuss 
only the stansucally slgmficant performance chfferences 
when summarlzmg our results All throughput results are 
expressed in units of transactions per second and response 
bmes are given m seconds 

Throughout the paper we use a fixed set of symbols 
for represenbng the data pomts obtamed from the three dlf- 
ferent concurrency control algorithms These symbols are 
summarized at the top of each of the pages with graphs 

4 1 Evperlment 1 Low Conflict Sltuatlon 
For the first experiment we used a larger database 

size of 10 000 objects Due to the large database size and 
the relanvelj small transachon size there were few con- 
fl~cts In this experiment The throughput results for a sys- 
tem W&I miinrte resources and a system wtth finite 
resources (I CPU and 2 disks) are shown m Figures 3 and 
4 respecnvelb The performance of the three concurrent) 
control strategies was close m both cases confirming the 
results reported In [Care83a, Care84, Agra83a Agra83b] 
and elsewhere - If confhcts are rare It makes little chffer- 
ence which concurrency control algorithm IS used In both 
cases. blochng outperformed the other two algorithms by a 
small amount Note also that the throughput curves reach 
a plateau at a mulbprogrammmg level of 75 In Figure 3 
(the mfimte resource case) This IS due to the fact that 

3 More InformatIon on the details of the mod&d batch means 
method rrav be found In [Care83a] 
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with 200 terminals a I second think time and an execu- 
bon bme of 500 mllhseconds (on the average) mcreasmg 
the allowed number of acnve transactions beyond 75 has no 
effect - all avadable transacuons are ahead) acnve and 
the rest are in the think state A plateau IS reached earher 
m Figure 4 (the finite resource case) because the resources 
are saturated with 25 concurrently acbve transacuons 

Smce we were Interested in mveshgatmg differences m 
concurrency control strateges we decreased the database 
size to 1000 objects (as shown in Table 2) to create a sltua- 
bon where conflicts are more frequent The rest of the 
experiments were performed using this database size 

4 2 Experiment 2 Infinite Resources 
The next experiment examined the performance 

characterlsncs of the three strategies assuming infinite 
resources for a variety of mulbprogrammmg levels With 
mfinite resources as the mulhprogramtnmg level IS 

Increased the throughput should also increase In the 
absence of data contenbon However for a given Size data- 
base the probablhty of confhcts increases as the mulbpro- 
grammmg level increases For blcckmg the increased 
confhct probablhq ~111 manifest Itself In the form of more 

Parameter Value 
db- stze 1000 pages 
traxstze 8 page readset 
ma32lze 12 page readset (maximum) 
tmasrze 4 page readset (mmimum) 
wrtreprob 0 25 
nuttL terms 200 termmals 
mpl 5 10, 25, 50, 75 100 and 200 
extthrnLttme I second 
obj- 10 35 mdhseconds 
obkcpu 15 milliseconds 

Table 2 Simulahon Parameter Settmgs 
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1 

200 

blocking due to demal of lock requests and an Increased 
number of restarts due to deadlocks For the restart- 
orlented strategies the htgher probablht? of confhcts will 
result m a larger number of restarts 

Figure 5 shows the throughput results for Experiment 
2 Blockmg starts thrashmg as the multlprogrammmg level 
1s increased beyond a certam level whereas the throughput 
keeps mcreasmg for the opnmlshc algorithm These results 
agree with predlchons m [Fran831 that were based on slml- 
lar assumpbons Figure 6 shows the average number of 
bmes that a transactjon was blocked and restarted per com- 
mlt called the block ratlo (dotted Ime) and the restart rabo 
(solid lmes) for the three concurrency control algorithms 
Note that the thrashmg m blockmg IS due to the large 
Increase m the number of times that a transacnon IS 
blocked, which reduces the effect!\e mulnprogrammmg 
level rather than to an mcrease m the number of restarts 
This result IS m agreement with the asseruon m [salt82 
Tay84a, Tay84b] that under low resource contentlon and a 
high level of mulhprogrammmg blockmg ma? start thrash- 
mg before restarts do Although the restart ratlo for the 
op0mlstic algorithm Increases qulcklq with an Increase m 
the mulbprogrammmg level new transacbons start execut- 
mg m place of the restarted ones, keepmg the effechve 
mulhprogrammmg level high and thus entsulmg an Increase 
rn throughput 

Unhke the other two algorithms the throughput of the 
Immediate-restart algorithm reaches a plateau This hap- 
pens for the followmg reason When a transacbon IS res- 
tarted m the lmmedlate-restart strategy, a restart delay IS 
Invoked to allow the confhctmg transactlon to complete 
before the restarted hY+fWIchon IS placed back m the ready 
queue The duration of the restart delay 1s exponenual with 
a mean equal to the runnmg average of the transaction 
response time - that IS the durabon of the delay IS adap- 
tlve depending on the observed average response time We 
chose to employ an adaphve delay after performmg a sense- 
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tiv~ty analysis that showed us that the performance of 
Immexhate-restarts IS senslhve to the restart delay nme par- 
hcularly In the mfimte resource case Our experiments 
mdlcated that a delay of about one transactlon time IS best 
and that throughput begms to drop off rapIdly when the 
delay exceeds more than a few transacnon times Because 
of this adapbve dela). then the lmmedlate-restart algorithm 
reaches a state where mcreasmg the multlprogrammmg 
level does not result m an actual Increase m the number of 
acuve transactlons - there are no transacnons waltmg m 
the ready queue so mcreasmg the allowed populanon has 
no effect All of the non-active transactions are either m a 
terminal thmkmg state or a restart delay state 

Figure 7 shows the mean response time (sohd Imes) 
and the standard devlanon of response hme (dotted hnes) 
for each of the three algorithms The response hmes are 
baslcally what one would expect given the throughput 
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results plus the fact that we have employed a closed queu- 
mg model TINS figure does Illustrate one Interesting 
phenomenon that occurred m nearly all of the experiments 
reported m 011s paper The standard denanon of the 
response brne IS smaller for blockmg than for the 
Immediate-restart algorithm o\er most of the multlprogram- 
mmg levels explored - the response nme variance for the 
Immediate-restart algorithm IS quite slgnlficant A high 
variance m response time IS undesirable from a user s 
standpomt 

4 3 Experiment 3 Resource-Lunlted Sltuatlon 
In Experiment 3 we analyzed the Impact of fimte 

resources on the performance characterlsfics of the three 
concurrency control algorithms A database system with I 
CPU and 2 disks was assumed for this experiment The 
throughput results are presented m Figure 8 

Observe that for all three algorithms as the mulnpro- 
grammmg level IS Increased the throughput first Increases 
then reaches a peak and then finally either decreases or 
remams roughly constant In a system with fimte CPU and 
l/O resources the achievable throughput may be con- 
stramed bq one or more of the followmg factors It ma) be 
that not enough transacoons are avallable to keep the sys- 
tem resources bus) Alternabvely It may be that enough 
transactlons are avallable but because of data contenhon 
the “useful” number of transacuons IS less than what 1s 
requtred to keep the resources “useful])” bus) That IS 
transactlons that are blocked due to loch confhcts are not 
useful ylrnllarlq the use of resources to process transac- 
tlons that are later restarted IS not useful Fmall) It ma\ 
be that enough useful non-confllctmg transactions are 
a\allable but that the a\allable resources are alread) 
saturated 

the resources ubhzed at low levels of muluprogrammmg 
Figure 9 shows the total (sohd hnes) and useful (dotted 
hnes) disk utdlzauons for thus experiment The useful utlh- 
zatlons mdlcate the fraction of the resources used to do 
work that actually completed (1 e they exclude the frachon 
used for worh that was later undone by restarts) The ut111- 
zanon of the disks IS selected here because the disks are 
the bottleneck resource with our parameter settmgs Note 
the direct COrrdahOn between the useful unhzaclon curves 
of Figure 9 and the throughput curves of Figure 8 a trend 
that IS evident m all of the experiments reported here For 
blocbng the throughput peaks at mpl = 25 where the 
disks are bemg 97 2% uuhzed with a useful utlhzatlon of 
92 1% lncreasmg the muluprogrammmg level further 
onlj Increases data contention and the throughput 
decreases as the amount of blockmg and the number of res- 
tarts Increase at a much faster rate For the optrmlsnc 
algorithm the useful uhhzaQon of the disks peaks at mpl = 
IO and the throughput decreases with an increase m the 
mulhprogrammmg level because of the increase In the res- 
tart ran0 This restart ratlo increase means that a larger 
fraction of the disk hme IS spent on processmg ObJects that 
WIII be redone later For the lmmedlate-restart algorithm 
the throughput also peaks at mpl = IO and then decreases 
remammg rough]) constant beyond 50 The throughput 
remams constant for this algorithm for the same reason as 
described m the last experiment - mcreasmg the allowable 
number of transactlons has no effect beyond 50 as all of 
the non-acme transachons are either thmkmg or m a res- 
tart delay state 

As the multlprngrammmg level was Increased the 
throughput first Increased for all three concurrent\ control 
algorithms as there were not enough transactions to keep 

With regards to the throughput for the three strategies 
several observauons are m order First the maxlmum 
throughput (I e the best global throughput) was obtamed 
with the blochmg algorithm Second lmmedlate-restarts 
performed as well as or better than the opumlshc algo- 
rlthm There were more restarts ~lth the cptnnlqnc algo- 
rlthm and each restart was more cxpenslve this IS 

u 
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reflected m the relahve useful disk uhhzatlons for the two 
strategies Fmallq the throughput achieved with the 
Immediate-restart strategy for mpl = 200 was somewhat 
better than the throughput achieved with either blockmg or 
W&I the optlmlstlc algortthm 

Figure IO gives the average and the standard devlahon 
of response nme for the three algorithms m the fimte 
resource case The differences are eben more nohceable 
than m the mfimte case Blochmg has the lowest delay 
(fastest response time) over most of the muluprogrammmg 
levels The Immediate-restart algorithm IS next and the 
OphmlstX algorithm has the worst response time As for 
the standard de\lahons blochmg 1s the best Immediate- 
restarts IS the worst and the optlmlstlc algorithm IS m 
between the two As m Experiment 1 the Immediate- 
restart algorithm exhlblts a verv high response hme \arl- 
ante 

One of the pomts rzused earher merits further dlscus- 
slon Should the performance of the Immediate-restart 
algorithm at mpl = 200 lead us to conclude that 
Immediate-restart IS a better strategy at high lecels of mul- 
hprogrammmg’ We beheve that the answer IS no for 
several reasons First the mulhprogrammmg level IS 
Internal to the database system, controllmg the number of 
transachons that may concurrently compete for data and 
resources and has nothmg to do with the number of users 
that the database system may support, the latter IS deter- 
mmed by the number of termmals Thus one should con- 
figure the system to control the mulhprogrammmg at a 
level which gives the best performance In our 
experiment the highest throughput and smallest standard 
devlatlon of response hme were achieved usmg the blockmg 
algorithm at mpl = 50 Second the restart delav m the 
Immediate-restart strategh IS there so that the confllctmg 
transactjon can complete before the restarted transactlon IS 
placed back mto the read\ queue However an unmtended 
side effect of this restart delac m a svstem alth a fimte 

El 
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Figure I I Throughput (Adaphke Delacs) 

number of users IS that It hm1t.s the actual mulhprogram- 
mmg level and hence also hmlts the number of confhcts 
and resulhng restarts due to reduced data contenhon 
Although the multlprogrammmg level was increased to the 
total number of users (200) the actual acerage mulhpro- 
grammmg level never exceeded about 60 Thus the restart 
delay provides a crude mechamsm for hmmng the mul- 
hprogrammmg level when restarts become over]\ frequent 
and addmg a restart delay to the other two algorithms 
should Improve their performance at high levels of mul- 
uprogrammmg as well 

To cerlf\ this latter argument we performed another 
experiment where the adapbve restart delay was used for 
restarted transacnons m both the blochmg and optimlsbc 
algorithms as well The throughput results that we 
obtamed are shown m Figure I I It can be seen that mtro- 
ducmg an adaptlbe restart delay helped to hmlt the mul- 
hprogrammmg level for the blochrng and optlmlstlc algo- 
rnhms under high conflrcts as It does for Immediate- 
restarts reducmg data contentlon at the upper end of the 
curves Blockmg emerges as the clear wmner and the 
performance of the opttmlstlc algorrthm becomes compar- 
able to the Immediate-restart strategy The one negative 
effect that we observed from addmg this dela) was an 
Increase m the standard devlahon of the response hmes for 
the blockmg and ophmlshc algorithms Smce a restart 
delay only helps performance for high mulfiprogrammmg 
levels It seems that a better strategy IS to enforce a lower 
mulhprogrammmg level hmlt to aved thrashmg due to high 
Contenhon and to mamtam a small standard deviation of 
response hme 

4 4 Experuuent 4 Multiple Resources 
In thus experiment we moved the system from fimte 

resources towards Infinite resources We increased the 
number of resources avallable to IO CPUs and 20 disks and 
then to 25 CPUs and 50 disks to determme where finrte 
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resources start behavmg hhe mfimte resources m a mul- 
hprocessor database machme environment 

For IO CPUs and 20 disks the behavior of the three 
concurrency control Grategles was farrly slmllar to the 
behavior m the case of I CPU and 2 disks The 
throughput results for 011s case are shown m Figure I2 
and the disk uhhZi3hOn figures for thus case are given In 
Figure I3 Blocking agam provided the highest overall 
throughput For large mulbprogrammmg levels however 
the Immediate-restart strategy probIded better throughput 
than blockmg but not enough to beat the hrghest 
throughput probIded by the blockmg algorithm In this 
resource configuratlon the maxlmum useful uhhzations of 
the dlshs with the blockmg lmmechate-restarts and the 
opnmlstlc algorithm were 55 5% 44 6% and 466% 
respective]) ahereas the maximum total disk utihzahons 
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were 61 8% 72 6% and 94 I% Note that due to res- 
tarts the total utlhzabons for the restart-oriented algorithms 
are higher than those for blockmg the difference IS par- 
hall) due to wasted resources By “wasted resources” 
here we mean resources used to process ObJects that were 
later undone due to restarts - these resources are wasted 
m the sense that they were consumed mahmg them una- 
vallable for other purposes such as background tasks 

For 25 CPUs and 50 dlshs the maximum throughput 
obtamed with the ophmlstlc algorithm beats the maxImum 
throughput obtamed W&I blockmg (although not by very 
much) The throughput results for this case are shown m 
Figure I4 and the unhzatlons are given m Figure I5 The 
total and the useful disk uhhzabons for the maxlmum 
throughput pmt for blockmg were 33 5% and 30 I % 
(respechvely) whereas the correspondmg numbers for the 
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OptImlstK algorithm were 62 6% and 32 6% Thus the 
optimlshc algorltbm has become attracnve because a large 
amount of otherwlse unused resources are akalable and 
thus the resources wasted due to restarts does not adversely 
affect performance In other words W&I useful uhhzations 
m the 30% range the system begms to behave somewhat 
like It has mfimte resources 

Another mtereshng observation from these results 1s 
that with blockmg resource unhzauon decreases as the 
level of mulaprogrammmg increases and hence throughput 
decreases This IS a further mdlcatlon that blockmg may 
thrash due to wamng for locks before It thrashes due to the 
number of restarts IBaIt Tay84a Tay84b] as we saw m 
the mfimte resource case On the other hand with the 
optimlstlc algorithm as the mulhprogrammmg level 
Increases the total ubhzatlon of resources and resource 
waste Increases and the throughput decreases somewhat 
Thus thus strategy ecentuallq thrashes due to the number 
of restarts (I e because of resources) With Immediate- 
restarts as explamed earher a plateau IS reached for 
throughput and resource utlhzanon because the actual mul- 
bprogrammrng level IS hmlted b\ the restart dela) under 
high data contention 

4 5 Experiment 5 Interactive Worhloads 
In our last experiment we modeled mteractl\e tran- 

sacbons that perform a number of reads thmk for some 
period of nme and then perform tbelr writes This model 
of mteractlve transactIons was momated by a large hod\ of 
form-screen apphcatlons where data 1s put up on the 
screen the user ma\ change some of the fields after starmg 
at the screen for a while and then the user types “enter” 
causmg the updates to be performed The intent of this 
experiment was to find out whether large mtra-transacnon 
- Internal - thmk times can cause a system with finrte 
resources to behake hke it has mfimte resources The 
mteractlve workload experiment was performed for Internal 
thmh times of 1 5 and IO seconds At the same hme the 
external thrnh times were Increased to 3 11 and 21 
seconds (respectIveI\) m order to keep roughly the same 
rauo of thmkrng transactions to active transactIons We 
hate assumed a fimte resource environment W&I 1 CPU 
and 2 disks for the system m thus experiment 

Figure paus (16 17) (18 19) dnd (20 21) show the 
throughput and drsk utlhzatlons obtamed for the I 5 and 
10 second Inter-transactjon thmk time experiments (respec- 
bvely) On the average a tranqactlon requires 150 mll- 
hseconds of CPU hme and 350 mdhseconds of disk time 
so Internal thmk times of 1 5 and 10 seconds thus consld- 
erablq Increase the duration for which a locks are held 
Thus causes the resource ubhzabon for blockmg to decrease 
as the Internal thmk hme Increases With the opbmlsbc 
algorithm the demand for resources IS also reduced due to 
large thmk ames and the resources start behavmg as 
though they were mfimte resources Consequendy for 
large thmk times the opnmlsbc algorithm performs better 
than the blockmg strategy (see Figures 18 and 20) For an 
Internal thmk time of 21 seconds the useful utihzabon of 
resource5 IS much higher with the opfimrstlc algorrthm than 

the blockmg strategy and the highest throughput value IS 
also conslderablq higher For 5 seconds of internal thmk 
hme the throughput and the useful utlhzatlon n1tl-1 the 
optlmlshc algorithm IS also better than for blockmg For a 
I second Internal thmk bme however blockmg performs 
better (see Figure 16) The resource unhzauons here are 
such that wasted resources due to restarts makes the 
optlmlsnc algorithm the loser 

The highest throughput obtamed W&I the opumlstlc 
algorithm was consIstentI> beael than that for Immediate- 
restarts although for higher levels of multlprogrammmg 
the throughput obtamed w1tl-1 Immediate-restarts uas better 
than the throughput obtamed wltb the optlmlsbc algorithm 
due to the mulbprogrammmg-hmmng effect of Immediate- 
restart s restart delay As noted before 011s high multipro- 
grammmg level difference could be reversed bq addmg a 
restart delay to the optlmlsnc algorithm 

5 CONCLUSIONS AND IMPLICATIONS 
One major conclusion of 011s stud) IS that for medium 

to high levels of resource utihzatron a blockmg algorltbm 
hke dynamic two-phase lockmg IS a better choice than a 
restart-orlented concurrency control hke the Immediate- 
restart or optlmlstlc algorithms However If resource Utah- 
zatlons are sufficlentlq low that a large amount of wasted 
resources can be tolerated and m addmon there are a large 
number of transactions acallable to execute then a restart- 
orlented algorithm IS a better choice We found the 
optlmlsbc algorithm to be the best choice under these con- 
dmons Such 10~ resource utlhzatlons could arlse m a 
database machme with a large number of CPUs and disks 
and a number of termmals slmllar to what one finds m typ 
lcal tlmesharmg systems today Thev could also arise m 
prlmarlly Interactive apphcahons where very large thmk 
times occur and the number of termmals IS such that the 
utllizahon of the system is low as a result It 1s an open 
quesnon whether or not such low uhhzabons could really 
occur m real systems If not blocking algorithms will 
remam the preferred method for database concurrency con- 
b-01 

Another result of this study IS that we have re- 
confirmed results from a number of other studies mclud- 
mg those reported m IBaIt Agra83a Agra83b Care83a 
Care84 Fran83 Taj84a Tay84bJ We have shown that 
seemmgl) contradictor\ results some of which favor bloch- 
mg algorithms and others of which favor restarts are not 
contradIctor\ at all The studies are all correct w&m the 
hmlts of their assumptions partlcularlq their assumpbons 
about system resources While It IS possible to study the 
effects of data contention and resource contenuon 
feparatelk m some models [Tay84a Tay84b] It appears not 
to be worth domg so If the goal IS to select a concurrency 
control algorithm for a real system - the proper algorithm 
choice IS resource-dependent 

An mterestmg side result of th~s stud) IS that the level 
of multlprogrammmg m database systems should be care- 
fully controlled We refer here to the multtprogrammmg 
level Internal to the database system controllmg the 
number of transacbons that ma) concurrent\> compete for 
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data, CPU and l/O serkxes As in the case of paging 
operating systems if the mul~programmmg level is 

increased beyond a certain level the blocking and optimis- 
tic concurrency control strategies start thrashing We have 
confirmed the results of [Balt82, Fran83 Tay84a. Tay84b] 
for lockmg in the low resource contention case but more 
important]> we have also seen that the effect can be signifi- 
cant for both locking and optimisbc concurrency control 
under higher levels of resource contention We found that 
when we delayed restarted transacbons by an amount equal 
to the running average response time it had the beneficial 
side effect of limiting the actual mulbprogrammmg level 
and the degradation in throughput was arrested (albeit a ht- 
tle bit late) Since the use of a restart delac to limit the 
mulbprogrammmg level is at best a crude strategv adaptive 
algorithms that dynamically adJust the multiprogramming 
level in order to maximize system throughput need to be 
designed Some performance indicators that might be used 
in the design of such an algorithm are useful resource utile- 
zation, running averages of throughput or response time 
etc The design of such adaptive algorithms IS an open 
problem 

In closing we wish to leave the reader with the fol- 
lowing thoughts about the future, due to Bill Wulf 
[ Wulf81) 

“Although the hardware costs will contcnue to fall 
dramatccalll and machme speeds will increase equal- 
ly dramancalk we must assume that our asplratcons 
wdl rrse even more Because of thu, we are not about 
to face either a cvcle or memon) surplus For the 
near-term fiture the dommant effect wrll not be 
machme cost or speed alone but rather a contrnumg 
anempt to mcrease the return from a finite resource 
- that IS a particular computer at our disposal ” 
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