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On Modeling Malware Propagation in Generalized Social Networks
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Abstract—A hybrid malware on smart phones can be prop-
agated by both end-to-end messaging services via personal
social communications and short-range wireless communication
services via spatial social interactions. Inspired from epidemi-
ology, we propose a novel differential equation-based model to
analyze the mixed behaviors of delocalized infection and ripple-
based propagation for the hybrid malware in generalized social
networks consisting of personal and spatial social relations.
Validated by simulations, our model serves as the very first
analytical model successfully approximating the complicated
propagation behaviors of the hybrid malware.

Index Terms—Epidemiology, malware propagation, proximity
malware, social network.

I. INTRODUCTION

THE popularity of mobile smart phones with richer wire-
less communication capabilities allows extensive social

interactions in the following aspects. First, the communication
between an individual and his friends in personal social net-
work interconnected by call records and contacts is facilitated
by portability of handset. Second, smart phones equipped with
short-range wireless communication (SRWC) technology such
as WiFi or Bluetooth (BT) realize peer-to-peer communication
between individuals in geographic proximity, building a spa-
tial social network. Such geographical interdependency for the
individuals in cellular infrastructure couples personal social
network with spatial social network as a generalized social
network, which amplifies the opportunities for attacks from
self-replicating malware.

The malware on handsets typically exploits messaging ser-
vices [1] or uses SRWC services to propagate. The differential
equation-based approach characterizing virus spreading in
Internet [2], [3] is feasible to model the messaging malware
dissemination due to homogeneity holds in person social net-
work. On the other hand, the behavior of malware spreading by
SRWC services was approximated by differential equation [4],
[5] or investigated by agent-based simulation [6], [7].

In the generalized social network consisting of personal
and spatial social relations, as shown in Fig. 1, a hybrid
malware can exploit both messaging and SRWC services
to spread. To the best of our knowledge, it is desirable to
have a mathematical model analyzing the mixed behaviors
of long-range infection pattern from spreading via messaging
service and ripple-based infection pattern from propagating
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Fig. 1. Propagation of a hybrid malware in the generalized social network.

via SRWC. The existing investigations conducted by agent-
based model [7] or by simulation [8] try to precisely capture
attributes of all individuals in the network and the interactions
among them. However, the complexity of modeling individual-
level details significantly increases computational costs [9] and
thus such agent-based simulations are unable to act as a quick
reference to identify such malware in large networks.

This letter proposes a novel analytical model to efficiently
analyze the speed and severity for spreading the hybrid
malware such as Commwarrior that targets multimedia mes-
saging service (MMS) and BT. Validation against conducted
simulation experiments reveals that our model developed from
the Susceptible-Infected (SI) model in epidemiology accu-
rately approximates mixed spreading behaviors in large areas
without the huge computational cost, which helps estimate
the damages caused by the hybrid malware and aids in the
development of detection and containment processes.

II. SYSTEM MODEL

The proposed model is originated from the SI model in
epidemic theory [10] to measure propagation of infections
within a population under risk. The communication between
a compromised and a noncompromised handset is modeled
as a contact between an infected individual and a susceptible
one, where a susceptible node acquires infection and never
becomes susceptible again. This is due to the users’ lack of
concern about the threat of malwares and the limited capability
of current antiviral software. The population in our model
is the total number of nodes 𝑁 in the network which are
assumed to be stationary and uniformly distributed with node
density 𝜌. We assume that all nodes are MMS- and BT-
enabled to maintain the homogeneous mixing property. Denote
subpopulation function 𝐼(𝑡) = 𝐼𝐵𝑇 (𝑡)+ 𝐼𝑀𝑀𝑆(𝑡) as the total
number of compromised handsets at time 𝑡, where 𝐼𝐵𝑇 (𝑡)
and 𝐼𝑀𝑀𝑆(𝑡) are those that have been infected via BT and
MMS at time 𝑡, respectively. Likewise, 𝑆(𝑡) denotes the set
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Fig. 2. The spreading phenomenon of a hybrid malware.

of susceptible nodes at time 𝑡. Obviously, we have

𝐼(𝑡) + 𝑆(𝑡) = 𝐼𝐵𝑇 (𝑡) + 𝐼𝑀𝑀𝑆(𝑡) + 𝑆(𝑡) = 𝑁, (1)

and

𝑑𝐼(𝑡)

𝑑𝑡
=

𝑑𝐼𝐵𝑇 (𝑡)

𝑑𝑡
+

𝑑𝐼𝑀𝑀𝑆(𝑡)

𝑑𝑡
. (2)

Without loss of generality, we assume that only one handset
is infected at the initial stage, that is, 𝐼(0) = 𝐼𝑀𝑀𝑆(0) = 1
and 𝐼𝐵𝑇 (0) = 0. The rates of malware infection 𝛽𝐵𝑇 and
𝛽𝑀𝑀𝑆 respectively represent the probabilistic rates at which
an infective node communicates with and compromises a
susceptible node through BT and MMS. The average degrees
of a node connecting via BT and MMS are denoted as 𝜂𝐵𝑇

and 𝜂𝑀𝑀𝑆 , respectively.

III. A DIFFERENTIAL EQUATION-BASED ANALYTICAL

MODEL

In this section, we present the analysis of the mixed propa-
gation behaviors by deriving 𝐼𝑀𝑀𝑆(𝑡) and 𝐼𝐵𝑇 (𝑡) describing
the time dynamics of infected subpopulations.

A. Spreading Dynamics via MMS

When an infected node tries to spread malware via MMS,
it behaves like traditional email virus seen on the Internet.
Typically, it sends MMS messages to phone numbers found
in the address book since message from an acquaintance has
higher possibility to be opened and further activated [1]. As
shown in Fig. 2, malware propagating via MMS follows a
delocalized pattern since that contacts in address book are
often far away.

By extracting the contacts in the address book of a handset,
a personal social network is constructed describing the social
relationships between handsets, which is exploited by MMS
malware for spreading. The average degree 𝜂𝑀𝑀𝑆 of the
network means the average number of contacts in the address
book and infection rate 𝛽𝑀𝑀𝑆 indicates the probability that a
susceptible node becomes infected after receiving the malware.
Please note that the probability that victim confirms and
installs the malware may affect 𝛽𝑀𝑀𝑆 . Under the assumption

of homogeneous mixing in the personal social network, the
basic differential equation that describes the dynamics of
infected subpopulation by MMS with time is

𝑑𝐼𝑀𝑀𝑆(𝑡)

𝑑𝑡
= 𝛽𝑀𝑀𝑆

𝑆(𝑡)(𝜂𝑀𝑀𝑆 − 1)

𝑁
𝐼(𝑡), (3)

where 𝜂𝑀𝑀𝑆 − 1 accounts for the fact that one infected node
implies at least one of its neighbors being infected.

B. Spreading Dynamics via BT

When an infected node intends to spread malware via BT, it
first scans to search the nearby nodes within its transmission
range 𝑅𝑐 and connects to the neighbor so as to determine the
susceptible neighbors for propagating. In this case, the average
number of neighbors 𝜂𝐵𝑇 equals 𝜌𝜋𝑅2

𝑐 . The probability that a
susceptible node becomes infected after receiving the malware
𝛽𝐵𝑇 depends on probability that it confirms and opens the
malware. Comparing with MMS with delocalized pattern, the
spreading effect via BT facilitated by mobility is much small
and thus human mobility is ignored in our model.

The behavior of such spontaneous spreading can be re-
garded as a ripple centered at the source infected node which
grows with time [5]. It is approximated into our model by
having only the infected nodes that lie on the periphery of an
infection circle can communicate with the susceptible nodes
located at a distance of at most 𝑅𝑐 outside the infection
circle, and thus have the potential to infect them. In other
words, as illustrated in Fig. 2, the spatial spreading of the
epidemics through BT is only contributed from the wavefronts
of infection circles, while the infected nodes located in the
interior of the infection circles are not engaged in further
spatial infections. This phenomenon should be carefully mod-
eled otherwise the overestimation problem [3] leads significant
deviation.

Without loss of generality, we assume that a single infection
circle is generated at time 𝑟 by a point source infected through
MMS and kept stretching for 𝑠 time units. Then its incremental
spatial infection at time 𝑟 + 𝑠 is

𝐺′(𝑟, 𝑠) ≜ 𝑑𝐺(𝑟, 𝑠)

𝑑𝑠
= 𝛽𝐵𝑇

𝑆(𝑟 + 𝑠) ⋅ 1
2𝜂𝐵𝑇

𝑁
𝑐
√
𝐺(𝑟, 𝑠), (4)

where 1
2𝜂𝐵𝑇 accounts for the fact that for an infected node

on a periphery, roughly half of neighbors outside the infec-
tion circle are susceptible. Under the assumption of uniform
distribution for nodes, 𝑐 = 2𝑅𝑐

√
𝜌𝜋 is the proportionality

constant [5]. The incremental spatial infection at time 𝑡 of all
infection circles is given by

𝑑𝐼𝐵𝑇 (𝑡)

𝑑𝑡
=

∫ 𝑡

0

𝐼 ′𝑀𝑀𝑆(𝜏)𝐺
′(𝜏, 𝑡− 𝜏)𝑑𝜏. (5)

It means that there are 𝐼 ′𝑀𝑀𝑆(𝜏)𝑑𝜏 point sources origi-
nated through MMS-infection at time 𝜏 and each contributes
𝐺′(𝜏, 𝑡− 𝜏) incremental spatial infection at time 𝑡.

IV. NUMERICAL RESULTS

A. Analysis Discussion

Fig. 3 illustrates the analytical plots depicting the propaga-
tion dynamics of a hybrid malware spreading via only BT,
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Fig. 3. Analytical results of propagation dynamics of spreading via BT,
MMS, and both under 𝜙 = 1/2 and 1/3.
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Fig. 4. Simulation results of propagation dynamics of spreading via BT,
MMS and both under 𝜙 = 1/2 and 1/3.

only MMS, and both among 2000 nodes under 𝜌 = 0.8.
We consider the impact of infection degree ratio (defined
as 𝜙 = 𝜂𝐵𝑇 /𝜂𝑀𝑀𝑆) on the the propagation process in
terms of speed and reachability. The parameter setups are
𝛽𝐵𝑇 = 𝛽𝑀𝑀𝑆 = 0.05 and 𝜂𝑀𝑀𝑆 = 6.

Fig. 3 also shows that the propagating via only BT is
relatively slow compared with that via only MMS due to
spatial spreading characteristics. We also observe the same
phenomenon on the hybrid malware with much faster propa-
gation speed, where the rapid invasion via MMS dominates the
propagation dynamics. When 𝜙 increases from 1/3 to 1/2 (i.e.,
𝜂𝐵𝑇 increases from 2 to 3), our model indicates a significant
increase in the propagation speed in early stages of spreading
process. This is in accordance with the fact that a larger 𝜂𝐵𝑇

results in a larger infected subpopulation who could exploit
both BT and MMS to spread, increasing propagation severity.

Note that agent-based emulation model [7] and simula-
tion [8] try to characterize behaviors of the 𝑁 nodes and all
interactions among them, which requires huge computation
overhead. In contrast, our model aggregates the 𝑁 nodes into

two states and only tracks the behavior of these two states

and the interactions between them, such that our model can
be more computationally effective.

B. Simulation Study

To validate the analytical model, we develop experiments to
simulate malware spreading via social and spatial interactions
among 2000 individuals uniformly deployed in a 50×50 plane.
The constructions of social networks and setup of parameters
(e.g., 𝜂𝑀𝑀𝑆 = 6) follow the data sheet in [8]. Fig. 4 illustrates
the time for a hybrid malware to infect a given fraction of the
network, spreading via only BT, only MMS and both, against
different values for 𝜙. Each reported result is averaged over
300 simulation runs.

We observe that the curves of propagation dynamics closely
match our analytical model, where limited discrepancy exists
mainly due to that the hybrid malware may propagate to
individuals who have already been infected and uncertain
boundary conditions could not be considered in the analysis.

V. CONCLUSION

Comparing with the existing agent-based model or simula-
tion with computation burden, our analytical model basing
on differential equations works more efficiently and could
act as a quick reference to gather approximate knowledge
of propagation speed and severity of hybrid malwares with
various settings of infection rates and average node degrees
in generalized social networks. The security assessment could
adopt such results to develop detection and containment strate-
gies and processes so as to avoid vital outbreak.

REFERENCES

[1] Z. Zhu, G. Cao, S. Zhu, S. Ranjan, and A. Nucci, “A social network
based patching scheme for worm containment in cellular networks,” in
Proc. 28th IEEE Int’l Conf. Comput. Commun. (INFOCOM ’09), Apr.
2009, pp. 1476–1484.

[2] R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free
networks,” Phys. Rev. Lett., vol. 86, no. 14, pp. 3200–3203, Apr. 2001.

[3] C. C. Zou, D. Towsley, and W. Gong, “Modeling and simulation study
of the propagation and defense of Internet e-mail worms,” IEEE Trans.
Dependable Secure Comput., vol. 4, no. 2, pp. 105–118, Apr.-Jun. 2007.

[4] J. W. Mickens and B. D. Noble, “Modeling epidemic spreading in
mobile environments,” in Proc. 4th ACM Workshop Wireless Security
(WiSe ’05), Sep. 2005, pp. 77–86.

[5] P. De, Y. Liu, and S. K. Das, “An epidemic theoretic framework
for vulnerability analysis of broadcast protocols in wireless sensor
networks,” IEEE Trans. Mobile Comput., vol. 8, no. 3, pp. 413–425,
Mar. 2009.

[6] G. Yan, L. Cuellar, and S. Eidenbenz, “Bluetooth worm propagation:
mobility pattern matters!” in Proc. 2nd ACM Symp. Inf., Comput. and
Commun. Security (ASIACCS ’07), Mar. 2007, pp. 32–44.

[7] A. Bose and K. G. Shin, “On capturing malware dynamics in mobile
power-law networks,” in Proc. 4th Int’l Conf. Security and Privacy in
Commun. Netw. (SecureComm ’08), no. 12, Sep. 2008.

[8] P. Wang, M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, “Under-
standing the spreading patterns of mobile phone viruses,” Science, vol.
324, no. 5930, pp. 1071–1075, May 2009.

[9] H. Rahmandad and J. Sterman, “Heterogeneity and network structure
in the dynamics of diffusion: comparing agent-based and differential
equation models,” Manag. Science, vol. 54, no. 5, pp. 998–1014, May
2008.

[10] D. J. Daley and J. Gani, Epidemic Modelling: An Introduction. Cam-
bridge University Press, 2001.


