IRGAN: A MINIMAX GAME FOR UNIFYING GENERATIVE AND DISCRIMINATIVE INFORMATION RETRIEVAL MODELS

Jun Wang
University College London
j.wang@cs.ucl.ac.uk

Lantao Yu, Weinan Zhang∗
Shanghai Jiao Tong University
wnzhang@sjtu.edu.cn

Yu Gong,
Yinghui Xu Alibaba Group
renji.xyh@taobao.com

Benyou Wang, Peng Zhang
Tianjin University
pzhang@tju.edu.cn

Dell Zhang Birkbeck,
University of London
dell.z@ieee.org
INTRODUCTION

FORMULATION
- A minimax Retrieval Framework
- Extension to Pairwise Case
- Discussion
- Links to Existing work

APPLICATION
- Web Search
- Item Recommendation
- Question Answering

EXPERIMENTS
- Web Search
- Item Recommendation
- Question Answering
INTRODUCTION

• Generator solution (relevant) document is generated from a given information need: $q \rightarrow d \quad P(d \mid q)$

• Statistical language models of text retrieval consider a reverse generative process from a document to a query: $d \rightarrow q \quad P(q \mid d)$

• Discriminative (classification) solution learned from labelled relevant judgements or their proxies such as clicks or ratings: $q + d \rightarrow r \quad P(d , q)$
• Discriminative model $p_\phi (r \mid q, d)$ aims to maximise the objective function by learning from labelled data

• Generative retrieval model $p_\theta (d \mid q, r)$ acts as a challenger who constantly pushes the discriminator to its limit

• Existing approaches generally try to model the interaction between user and system, whereas our approach aims to unify generative and discriminative IR models.
FRAMEWORK
FRAMEWORK

• For a given query q_n, a set of relevant documents labelled, the size of which is much smaller than the total number of documents M.

• True relevance distribution as conditional probability $p_{\text{true}}(d \mid q, r)$, which depicts the (user’s) relevance preference distribution over the candidate documents with respect to her submitted query.

• Given a set of samples from $p_{\text{true}}(d \mid q, r)$ observed as the training data.
Minimax Retrieval Framework

- **Generative retrieval model** $p_{\theta}(d | q, r)$ which tries to select relevant documents, from the candidate pool for the given query q
- Its goal is to approximate the true relevance distribution $p_{\text{true}}(d | q, r)$ as much as possible.
- **Discriminative retrieval model** $f_{\phi}(q, d)$, discriminate well-matched query-document tuples (q, d) from ill-matched ones, where the goodness of matching given by $f_{\phi}(q, d)$, depends on the relevance of d to q
- Its goal is to distinguish between relevant documents and nonrelevant documents for the query q
\[J_{G^*, D^*} = \min_{\theta} \max_{\phi} \sum_{n=1}^{N} \left(\mathbb{E}_{d \sim p_{\text{true}}(d|q_n, r)} \left[\log D(d|q_n) \right] + \mathbb{E}_{d \sim p_{\theta}(d|q_n, r)} \left[\log (1 - D(d|q_n)) \right] \right) \]
• *maximise* the log-likelihood of correctly distinguishing the true and generated relevant documents.

• With the observed relevant documents, and the ones sampled from the current optimal generative model $p_{\theta^*}(d \mid q, r)$

• $\phi^* = \arg \max_{\phi} \sum_{n=1}^{N} \left(\mathbb{E}_{d \sim p_{true}(d \mid q_n, r)} \left[\log \sigma \left(f_{\phi}(d, q) \right) \right] + \mathbb{E}_{d \sim p_{\theta}(d \mid q_n, r)} \left[\log \left(1 - \sigma \left(f_{\phi}(d, q) \right) \right) \right] \right)$

• where if the function f_{ϕ} is differentiable with respect to ϕ, the above is solved typically by stochastic gradient descent
Optimising Generative Retrieval.

• *minimise* the objective; it fits the underlying relevance distribution over documents $p_{\text{true}}(d \mid q, r)$, randomly samples documents from the whole document set in order to *fool* the discriminative retrieval model.
Scenario of Reinforcement Learning

Agent learns to take actions maximizing expected reward.

Observation

State

Agent

Action

Change the environment

Reward

Thank you.

Environment

https://yoast.com/how-to-clean-site-structure/
Optimising Generative Retrieval.

\[\theta^* = \arg \min_{\theta} \sum_{n=1}^{N} \left(\mathbb{E}_{d \sim p_{true}(d|q_n, r)} \left[\log \sigma \left(f_\phi (d, q) \right) \right] + \mathbb{E}_{d \sim p_\theta (d|q_n, r)} \left[\log \left(1 - \sigma \left(f_\phi (d, q) \right) \right) \right] \right) \]

\[= \arg \max_{\theta} \sum_{n=1}^{N} \left(\mathbb{E}_{d \sim p_\theta (d|q_n, r)} \left[\log \left(1 + \exp \left(f_\phi (d, q) \right) \right) \right] \right) \]

• As the sampling of \(d \) is discrete, it cannot be directly optimised by gradient descent as in the original GAN formulation.
• A common approach is to use policy gradient based reinforcement learning
• \(\mathbb{E}_{d \sim p_\theta (d|q_n, r)} \left[\log \left(1 + \exp \left(f_\phi (d, q) \right) \right) \right] = J^G(q_n) \)
Optimising Generative Retrieval.

policy gradient based reinforcement learning

\[\nabla_{\theta} J^G(q_n) \]

\[= \nabla_{\theta} \mathbb{E}_{d \sim p_{\theta}(d|q_n,r)} \left[\log \left(1 + \exp \left(f_\phi(d, q_n) \right) \right) \right] \]

\[= \sum_{i=1}^{M} \nabla_{\theta} p_{\theta}(d_i | q_n, r) \log \left(1 + \exp \left(f_\phi(d_i, q_n) \right) \right) \]

\[= \sum_{i=1}^{M} p_{\theta}(d_i | q_n, r) \nabla_{\theta} \log p_{\theta}(d_i | q_n, r) \log \left(1 + \exp \left(f_\phi(d_i, q_n) \right) \right) \]

\[= \mathbb{E}_{d \sim p_{\theta}(d|q_n,r)} \left[\nabla_{\theta} \log p_{\theta}(d|q_n,r) \log \left(1 + \exp \left(f_\phi(d, q_n) \right) \right) \right] \]

\[\approx \frac{1}{K} \sum_{k=1}^{K} \nabla_{\theta} \log p_{\theta}(d_k | q_n, r) \log \left(1 + \exp \left(f_\phi(d_k, q_n) \right) \right) \]
• the generator and discriminator can be initialised by their conventional models.

- Eq(5): \(\frac{1}{K} \sum_{k=1}^{K} \nabla_{\theta} \log p_{\theta}(d_{k}|q_{n}, r) \log \left(1 + \exp \left(f_{\phi}(d_{k}, q_{n}) \right) \right) \)

- Eq(3): \(\arg \max_{\phi} \sum_{n=1}^{N} \left(\mathbb{E}_{d \sim p_{\text{true}}(d|q_{n}, r)} \left[\log \sigma \left(f_{\phi}(d, q) \right) \right] + \mathbb{E}_{d \sim p_{\theta}(d|q_{n}, r)} \left[\log \left(1 - \sigma \left(f_{\phi}(d, q) \right) \right) \right] \right) \)
Links to Existing Work

• G provides different negative samples to the D training (like negative sampling)
• D’s reward signal provides strategic guidance for G training
• G pick documents are regards as negative sample, but pseudo relevance feedback are regards as positive samples
• G will have many iterations, but pseudo relevance feedback usually no further iterations
Web Search

- $x_{q,d} \in R^k$, each dimension represented some value (BM25, TFIDF, PageRank)

- $s(q, d) = w_2^T \tanh(W_1 x_{q,d} + b_1) + w_0$
Item recommendation

• Matrix factorisation

• \(s(u, i) = b_i + v_u^T v_i \)

• \(b_i = \) basic item\(, \) \(v_u \) \(, \) \(v_i = \) latent vector of user and item
Question Answering

• Question and Answer is represented as a sequence of words

• Using CNN or LSTM to learn sequence of words (l-words), each word is embedded as a vector (k-dim), now we have matrix in $\mathbb{R}^{l \times k}$

• After CNN get v_q and $v_a \in \mathbb{R}^z$, $z =$ number of convolutional kernels.

• $s(q, a) = \cos(v_q, v_a)$