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Abstract— We investigate the departure process of an ATM output
buffer intaking asymptotically second-order self-similar traffic using
matrix-analytic technique. The results obtained include the marginal and
joint distribution of interdeparture times. We show that output and input
processes asymptotically possess the same tail and smoothing effect takes
place only for traffic with small Hurst parameters.

I. INTRODUCTION

In the past, self-similarity has mainly been exploited in non-
communication areas, such as hydrology, geophysics, eco-
nomics, mathematics, and statistics. Mandelbrot [1] was first
to apply this concept to communication systems. But the ap-
plication of self-similarity to communications is still in its in-
fancy. In a recent article, Leland, Taqqu, Willinger, and Wilson
[2] showed that self-similarity appears in the aggregated traffic
across high-resolution Ethernet local area networks (LAN’s).
The self-similar behaviors of traffic over wide area networks
(WAN’s) [3], and other working networks, e.g., variable bit
rate (VBR) video over asynchronous transfer mode (ATM) [4],
have also been studied.

The works we mentioned in the above all point out that self-
similar or fractal behavior in traffic over contemporary com-
munication networks can not be captured using traditional traf-
fic models such as Poisson, Markov-modulated Poisson, and
fluid flow model. Therefore, a new class of traffic models and
a new round of performance analysis necessitate. Research in
this regard has been reported recently, e.g., [5]–[7]. Diamond
and Alfa [7] showed that the renewal process with (asymptotic)
hyperbolically distributed interarrival time exhibits self-similar
behavior and analyzed the resulting hyper/D/1 queue using the
matrix-analytic technique to obtain the mean and standard de-
viation of queue length. Following [7], we use the heavy-tailed
renewal process to capture self-similarity.

Among various transport technologies, ATM is promising
for interconnection of enterprise networks composed of sev-
eral LAN’s carrying perhaps VBR traffic. Although a few
works have addressed the node-level performance issues of
ATM queues when self-similar traffic is taken into consider-
ation, performance analysis should not limit to node level only
since ATM networks are connection-oriented. One way to ex-
tend nodal analysis to connection-wise analysis is first to an-
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alyze the departure process, then recursively perform nodal
analysis. So far, only very few papers have attempted to ad-
dress the issue of output process characterization pertinent to
self-similar input traffic. Vamvakos and Anantharam [8] stud-
ied the departure process of a leaky bucket system, one of the
schemes proposed for flow control in ATM networks, receiving
long-range dependent input traffic. They established upper and
lower bounds for the covariance sequence of the output count-
ing process and concluded that long-range dependence (LRD)
cannot be removed through the leaky bucket scheme. But the
structure of the output process has not been provided. In this
paper, we characterize the output process of an ATM queue that
receives asymptotically second-order self-similar traffic. The
characterization is done through finding the interdeparture time
distribution and joint distribution of successive interdeparture
times. We show that the tail of the output process asymptoti-
cally remains the same as that of the input process.

The rest of the paper is organized as follows. Section II gives
the queueing model we employed and introduces the related
notation. In Section III, we analyze the departure process of
the corresponding queueing system. Results obtained include
the interdeparture time distribution and the joint distribution
of successive interdeparture times. Section IV gives numerical
examples and discussions. Finally, Section V concludes the
paper.

II. QUEUEING MODEL AND NOTATION

We consider an ATM switch with � input/output ports in this
paper. For a specific output buffer, traffic streams from vari-
ous input ports are served in a round-robin manner and each
receives a service time of ��. To properly reflect the work-
ing mechanism, we employ the discrete-time model in which
time is discretized into basic time unit with duration ����.
Each input port may or may not generate a cell during each
time unit. Here, we assume infinite buffers and the aggre-
gated cell streams to a specific output buffer follow a heavy-
tailed renewal process with interarrival time distribution ����.
In the following, we use �� � ���� for convenience. Due to
the renewal property, embedded Markov chain (EMC) at ar-
rival epochs can be employed to facilitate analysis. For con-
venience, let �� and ��, respectively, denote the queue length
seen by the �th cell on its arrival and the remaining service time
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of the cell in service seen by the �th cell. Clearly, the EMC at
arrival epochs has the state space � � ��	
 ����� � 	
 �� �
�� 	 � �
 �
 � � � � � � �
 � � � 
 � or 	 � � � ��. Note that (0,0)
denotes the state that system is idle. The transition probabil-
ity matrix of the EMC at arrival epochs has the following form
[7]:
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with �� �
	
�

��� �� and the operator � indicates the transpose
of a matrix. The stationary transition probability vector� of� ,
i.e., �� � �, can be partitioned into � � �����
��
��
 � � ��
with �� � �����
 ����
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 �����, 	 � �, where ���� �
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 �� � ��. The solution is in the form
of � � �����
��
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 � � ��, where� �
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�� [9]. Ra-

maswami [10] proposed an efficient algorithm to solve the non-
linear matrix equation� �

	
�

����
�
��.

III. OUTPUT PROCESS CHARACTERIZATION

A. Interdeparture Time Distribution

Define �	�� and �
��, respectively, to be the interarrival time
between the �th and the �� 
 ��st cell arrivals and the interde-
parture time between the �th and the �� 
 ��st cell departures.
Let ����� � ����
�� � �� �� � �� denote the interde-
parture time distribution. Then ����� can be obtained using
system time diagrams for the following two cases, i.e., � � �
and � � �
 �.

����� �


�����
����


��
���

������ 


��
���

��
���

���������
���

������ , for � � �,

������ 


��
���

��
���

�����������
 , for � � �
 �.

(4)
From (4), we can easily derive

����� � ����
 as ��� (5)

where ���� � ���� means ����������
 � � as � � �. This
tells us that the tail of the output process is asymptotically the
same as that of the input process.

B. Joint Distribution of Successive Interdeparture Times

Now, we derive the joint distribution of � �� �� suc-
cessive interdeparture times. Let �����
 ��
 � � � 
 ��� denote
the joint distribution of � successive interdeparture times,
i.e., �����
 ��
 � � � 
 ��� � ����
�� � ��
 �
���� �
��
 � � � 
 �
������ � ��� ��� � �
���. Using system time
diagrams, it can easily be shown that �����
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 ��� for
�� � �
��, turns out to be
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To derive more general result, we further introduce � 
’s �� �
�� as follows:
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where �
 
 �����
 �
���
�� � �	���
� represents the time
between the �� 
 ��th cell arrival and the �� 
 � � ��st cell
departure if the �� 
 � � ��st cell departure occurs behind the
�� 
 ��th cell arrival; otherwise it is set to zero. State �	

 �
�
represents the state seen by the ��
 �� ��st cell on its arrival
and 	
, �
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By definition, �	
� 
 �
 
 �
 � �
� denotes the interarrival
time between the ��
 �� ��st cell arrival and the ��
 ��th cell
arrival, see Fig. 1. Then �����
 ��
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 ��� can be written as
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The first equality results from the renewal property of the ar-
rival process and the second equality results from the fact that
	
� 
 �
 � �
��. Note that (8) indeed reduces to (6) when the
case �� � �
��, is considered since �
 � �
��. This checks the
correctness of (8).
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Fig. 1. System time diagrams: (a) the case ���� � � that yields ���� � �

(� � � � �� � ��� � �); (b) the case ���� � � �� �� that yields
���� � ��� � ��.

TABLE I

TRAFFIC LOAD UNDER DIFFERENT PARAMETER SETS.

��
 �� (15,1.4) (15,1.6) (15,1.8)
Traffic load 0.5850 0.7620 0.9031

��
 �� (45,1.4) (45,1.6) (45,1.8)
Traffic load 0.1938 0.2519 0.2981

IV. NUMERICAL EXAMPLES AND DISCUSSIONS

Consider the renewal arrival process with the discrete Pareto
type interarrival time distribution [3], [7], i.e.,
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where � represents the location parameter and � is the shape
parameter. According to the definition given by [3], it can
easily be shown that the discrete Pareto distribution is heavy-
tailed. Then the arrival process exhibits asymptotically second-
order self-similar nature mentioned earlier. The corresponding
Hurst parameter is related to the shape parameter via � �
��� ���� [7]. For self-similar traffic, the Hurst parameter falls
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Fig. 2. Comparison between interdeparture and interarrival time distributions
for traffic streams with different Hurst parameters: (a) � � �� and (b)
� � �� under �� � � � �	.

within ��� � � � � and it governs the degree of burstiness.
Traffic is more bursty if it has a larger Hurst parameter.

Now, let service time be 30 time units (i.e., �� � � � ��).
As for parameters of input traffic, we set � � ��, �� and
vary � from 1.4 to 1.8 to represent different degrees of the
self-similarity (corresponding to Hurst parameter � varying
from 0.8 to 0.6). The values of traffic load under different pa-
rameters are listed in Table I. Figs. 2(a) and 2(b) show the
comparison between the distributions of both interarrival and
interdeparture times under � � �� and � � ��, respectively.
Fig. 2(a) reveals the followings: 1) Interdeparture time distri-
butions are intensified at 30 (the value of service time), and de-
cay faster than interarrival time distributions over short range.
Traffic with a larger Hurst parameter incurs a slower decay, i.e.,
smoothing effect takes place only for traffic with small Hurst
parameters. 2) The tail of the interdeparture time distribution
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asymptotically remains the same as that of the interarrival dis-
tribution, i.e., both input and output processes are heavy-tailed.
This fact has also been concluded from (5). Fig. 2(b) shows
that the interdeparture time distribution is the same as the inter-
arrival time distribution. This is due to that interarrival times
are not smaller than 45 (larger than 30) time units when the
location parameter � is fixed at 45. Of course, both input and
output processes are heavy-tailed.

V. CONCLUSIONS

The impact of self-similarity on system performance in con-
temporary telecommunication networks, e.g., ATM networks
and Ethernet LAN’s, has been noticed in the literature. Al-
though traffic modeling and performance analysis pertinent
to self-similarity have been intensively studied, works on the
output process characterization are so far rare. Vamvakos
and Anatharam [8] studied the departure process of a leaky
bucket system when input is the long-range dependent traffic.
Although the upper and lower bounds of the covariance se-
quence of the output counting process were obtained and the
phenomenon that LRD cannot be removed through the leaky
bucket system was observed, no further insight of the output
process is investigated. In this paper, we have analyzed the out-
put process of an ATM switch output buffer via obtaining the
interdeparture time distribution and joint distribution of suc-
cessive interdeparture times. We show that the smoothing ef-
fect takes place only for traffic with small Hurst parameters and
that the tail of output distribution is asymptotically the same as
that of input distribution.

Once the output process characterization is completed,
it can be applied to extend the nodal performance analy-
sis to connection-wise performance analysis through moment
matching schemes in a recursive manner. This is a topic of
future research.
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