a2 United States Patent

US007461233B2

(10) Patent No.: US 7,461,233 B2

Hsieh et al. 45) Date of Patent: Dec. 2, 2008

(54) METHOD FOR IDENTIFYING DATA 6,408,374 B1* 6/2002 Calamvokis et al. 711/216
CHARACTERISTICS FOR FLASH MEMORY 6,988,180 B2* /2006 Kadatch 7117216

75 1 - Jen-Wei Hsich. Taioei (TW): LiPi 7,089,398 B2* §72006 Zhang 711207
nventors: Jen-Wei Hsieh, Taipei (TW); Li-Pin 7,155,582 B2* 122006 ROSS vverreeeerrererererenne 711/158

Chang, Banciao (TW); Tei-Wei Kuo,
Taipei (TW); Hsiang-Chi Hsieh, Sindian
(TW)

(73) Assignee: Genesys Logic, Inc., Taipei (TW)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 230 days.

(21) Appl. No.: 11/452,348

(22) Filed: Jun. 14, 2006
(65) Prior Publication Data
US 2007/0028033 Al Feb. 1, 2007
(30) Foreign Application Priority Data
Jul. 29, 2005 (TW) e 94125949 A
(51) Imt.ClL
GO6F 12/00 (2006.01)
(52) US.CL .o 711/216; 711/103; 707/3
(58) Field of Classification Search 711/103,

711/216, 219; 707/3
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,014,733 A * 12000 Bennettcccoee. 711216

* cited by examiner

Primary Examiner—Jasmine Song
(74) Attorney, Agent, or Firm—Rosenberg, Kleni & Lee

(57) ABSTRACT

A highly efficient data characteristic identification method
for flash memory is provided, including the steps of: (a) based
on the LBA corresponding to the write request to the flash
memory, finding K corresponding counters in the hash table
through K hash functions; (b) determining whether to per-
form decay period computation on hash table; if so, proceed-
ing to step (¢); otherwise, proceeding to step (d); (¢) perform-
ing decay period computation on the hash table; (d)
performing state update computation on the hash table; and
(e) checking the hash table state and determining whether the
data in the logic block corresponding to the flash memory is
frequently updated. The method contains the decay period
computation, state update computation, and checking on the
data in the corresponding counters in the hash table to deter-
mine whether the data is frequently updated. Therefore, the
object of a highly efficient data access characteristic identifi-
cation method for flash memory is provided.

6 Claims, 11 Drawing Sheets

based on the LBA corresponding 10
to the write request to the flash)

memory, finding K corresponding
counters in the hash table through
K hash functions

20

No

determining whether to perform decay
period computation on hash table

30

—~

[performing decay
tperiod
lcomputation on
the hash table

3

-

performing state

the hash table; and

update computation on

checking the hash table state and
determining whether the data in the
ogic block corresponding to the
[flash memory is frequently updated

End

U.S. Patent Dec. 2, 2008 Sheet 1 of 11 US 7,461,233 B2

Start

based on the LBA corresponding 10
to the write request to the flash IJ
memory, finding K corresponding

counters in the hash table through
K hash functions

30
20

performing decay
period
computation on
he hash table

determining whether to perform decay
period computation on hash table

40

performing state
update computation on
the hash table; and

(

50

checking the hash table state and
determining whether the data in the
logic block corresponding to the
flash memory is frequently updated

End

FIG.1

U.S. Patent Dec. 2, 2008 Sheet 2 of 11 US 7,461,233 B2

Start

transmitting the LBA of the flash 101
memory corresponding to the /

write request as input to K
independent hash functions

'

each hash function / 102
generating an index based
on the input

'

extracting K
corresponding counters 103
from the hash table, f

based on the K indexes,
and performing the
processing and
identification

End

FIG.2

U.S. Patent Dec. 2, 2008 Sheet 3 of 11 US 7,461,233 B2

100

/

100€0)
100(1)

100(N-1)

FIG.3

U.S. Patent Dec. 2, 2008 Sheet 4 of 11 US 7,461,233 B2

(st)

A 4

right shifting all | ——301
the counters 1n the

hash table one bit

'

—— 302
filling a zero in the
most significant bit

303

Vo

restoring the
contents of the
counters

Y
(" End)

FIG.4

U.S. Patent Dec. 2, 2008 Sheet 5 of 11 US 7,461,233 B2

100 100

100(0) 100(0)
100(1) 100(1)

1006)|1 1111 100(6)

100910101110 100(9)

1I00(N-3)[1]1]0]0 100(N-3)
100(N-1) 100(N-1)

OO OO IO OO

FIG.5

U.S. Patent Dec. 2, 2008 Sheet 6 of 11 US 7,461,233 B2

401 402
[

the counter
YES remaining
unchanged

sequentially checking K
counters for overflowing after
adding 1

the counter 403
incremented by 1,
and restored to the
counter

FIG.6

U.S. Patent Dec. 2, 2008 Sheet 7 of 11 US 7,461,233 B2

100 100 100

100(0) 100¢0) 100(0)
100(1) 100(1) 100(1)

1006) —* 1 [1[1]1 1006)[1T 1[1 00(6) 1 T T [1
100(9) —{0[0]10 Il:100(9) 0[0[1]0 S00(9) 0[0[1]1

100(N-1) =1 1]1/0{0] 100(N-1)[1/1]0|0| 100(N-1){1[1]0]1
100(N-3) 100(N-3) 100(N-3)

FIG.7

U.S. Patent Dec. 2, 2008 Sheet 8 of 11

(—404

Yes

sequentially checking K
ounters for overflowing afte
adding 1

406

the counter
incremented by 1,

right shifting all
the counters in the
hash table 1 bit and
filling a zero to the
most significant bit

and restored to the
counter

FIG.8

US 7,461,233 B2

405

U.S. Patent

100(0)
100(1)

100(6) — 11111

100(9) —{0[0[1]0

100(N-3)—>1[1]0[0

100(N-1)

p,

[y

Dec. 2, 2008

100(0)
100(1)

100(6)|.1 |

100(9)

100(N-3)

100(N-1)

100(0)
100(1)

100(6)

=

100(9)

100(N-3)

Sheet 9 of 11

s

100(N-1)

FIG.9

oolo|o|o|O|O|O| O O|CID)| OO OIO|O| OO0

US 7,461,233 B2

100(0)

100(1)

100(6)

=

10009)

0

100(N-3)

100(N-1)

U.S. Patent

Dec. 2, 2008

Sheet 10 of 11

checking the contents of the H most
significant bits of the

corresponding counter
being non-zero

503

identifying the data in the
corresponding LBA being
infrequently updated

FIG.10

US 7,461,233 B2

502

;

identifying the data in
the corresponding
LBA being

frequently updated

U.S. Patent Dec. 2, 2008 Sheet 11 of 11 US 7,461,233 B2

100 100

100(0) 100(0)
100(1) 100(1)

1006) —* 1111111 1006) L1 {11111

—

1009)—=0/0/10 10009) [0}0.11 |0

100(N-3)—0[1]0]0] 100(N-3)[0]1]0]0
100(N-1) 100(N-1)

FIG.11

US 7,461,233 B2

1

METHOD FOR IDENTIFYING DATA
CHARACTERISTICS FOR FLASH MEMORY

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a method for efficient
identification of data characteristics for flash memory and,
more particularly, to a method having a plurality of hashing
units to efficiently identify the characteristics of the data
stored in logical block address, applicable to data access to
flash memory.

2. The Related Arts

The flash memory is widely used in storing multimedia
data, such as digital images or audio data. However, during
the access process, the conventional flash memory requires a
plurality of logical block addresses (I.LBA) to store the system
storage time of the flash memory to provide the data update
time of the stored data to the flash memory access control
circuit on the devices, such as digital camera, cell phone, card
reader or computer, for file editing and management. There-
fore, the frequency of data update and related state informa-
tion is an important identification parameter for the flash
memory access control.

There are two conventional methods to identify how often
the data in flash memory is updated. The first method, as
disclosed in the paper by M. L. Chiang, Paul C. H. Lee and R.
C. Chang, “Managing Flash Memory in Personal Communi-
cation Devices,” ISCE, 1997, December (pp. 177-182), is to
maintain a large array for storing the last access time of all the
LBA that the system can possibly access. When the system
receives a new write request, the current system time is com-
pared with the last access time of the LBA. If the difference
between the two is within a system-defined range, the data is
identified as being frequently updated; otherwise, the data is
identified as being infrequently updated. The drawback of
this method is that it uses a large amount of memory. For
example, for a 512 M bytes flash memory, with 512-bytes as
an access unit, there will be 1,048,576 LBA for access. If four
bytes are required for storing a time unit, this method requires
4M bytes for storing the time information.

The second method, as disclosed by L. P. Chang and T. W.
Kuo, “An Adaptive Striping Architecture for Flash memory
Storage Systems of Embedded Systems,” 8th IEEE RTAS,
September 2002 (pp. 187-196), is to use two linked lists to
record the recently accessed LBA. The first linked list is a hot
list, with each node of the hot list storing an LBA whose data
is frequently updated. The second list is a candidate list,
which is an under-study of the first list. To save the memory,
the length of each list is restricted. For example, the first list
has 512 nodes, and the second list has 1024 nodes. When the
system receives a write request, the system First checks
whether the corresponding [.LBA is in the hot list. If so, the
LBA is identified as being frequently updated, and the corre-
sponding node for the LBA is moved to the head of the hot list.
Otherwise, the LBA is identified as being infrequently
updated, and is checked to determine whether it is in the
candidate list. If the LBA is in the candidate list, the corre-
sponding node is added to the head of the hot list, and if the
hot list is full, the last node of the hot list is moved to the head
of'the candidate list. If the LBA is not in the candidate list, the
LAB is stored in a new node and the new node is added to the
head of the candidate list, and if the candidate list is full, the
last node of the candidate list is removed.

Although the second method consumes less memory than
the first method, the drawback of the second method is that the
execution time is unstable. This is because the system may

20

25

30

35

40

45

50

55

60

65

2

find the node at the head of the first list, or may search the
entire two lists without finding the node. This causes the
unstable factor of the flash access and the CPU cycle to affect
the overall efficiency of the flash memory usage.

SUMMARY OF THE INVENTION

The present invention is made to overcome the aforemen-
tioned drawback of the conventional methods. The primary
object of the present invention is to provide a low memory-
consumption data characteristic identification method for
flash memory, using a hash function and a hash table defined
by the logic block address corresponding to the flash memory
write request to reduce the memory size required for data
characteristic identification of flash memory logic blocks.

Another object of the present invention is to provide a
highly efficient data characteristic identification method for
flash memory. By computing decay period, state update and
state checking when the hash table defined by the correspond-
ing logic block of flash memory accepting the write request,
the method of the present invention can rapidly identify data
characteristics of the flash memory. The method has mini-
mum execution time and higher stability in data characteristic
identification.

To achieve the aforementioned objects, the present inven-
tion provides a highly efficient data characteristic identifica-
tion method for flash memory, including the steps of: (a)
based on the LBA corresponding to the write request to the
flash memory, finding K corresponding counters in the hash
table through K hash functions; (b) determining whether
decay period computation on hash table; if so, proceeding to
step (c); otherwise, proceeding to step (d); (¢) performing
decay period computation on the hash table; (d) performing
state update computation on the hash table; and (e) checking
the hash table state and determining whether the data in the
logic block corresponding to the flash memory is frequently
updated. The method contains the decay period computation,
state update computation, and checking on the data in the
corresponding counters in the hash table to determine
whether the data is frequently updated. Therefore, the object
of a highly efficient data access characteristic identification
method for flash memory is provided.

These and other objects, features and advantages of the
invention will be apparent to those skilled in the art, from a
reading of the following brief description of the drawings, the
detailed description of the preferred embodiment, and the
appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention can be understood in more detail by
reading the subsequent detailed description in conjunction
with the examples and references made to the accompanying
drawings, wherein:

FIG. 1 is a flowchart of the present invention;

FIG. 2 is a flowchart of the step of finding K corresponding
counters in the hash table through K hash functions;

FIG. 3 is the schematic view of the hash table for the
flowchart of the step of finding K corresponding counters in
the hash table through K hash functions of FIG. 2;

FIG. 4 is a flowchart of decay period computation;

FIG. 5 is a schematic view of the hash table during the
decay period computation;

FIG. 6 is a flowchart of the first embodiment of the step of
state update computation;

FIG. 7 is a schematic view of the hash table during the state
update computation for the embodiment of FIG. 6;

US 7,461,233 B2

3

FIG. 8 is a flowchart of the second embodiment of the step
of state update computation;

FIG. 9 is a schematic view of the hash table during the state
update computation for the embodiment of FIG. 8;

FIG. 10 is a flowchart of the step of state checking; and

FIG. 11 is a schematic view of the hash table during the
state checking of FIG. 10.

DETAILED DESCRIPTION OF THE INVENTION

With reference to the drawings and in particular to FIG. 1,
a flowchart of a data characteristic identification method of
the present invention comprises the steps of:

(10) based on the LBA corresponding to the write request
to the flash memory, finding K corresponding counters in the
hash table through K hash functions;

(20) determining whether to perform decay period compu-
tation on hash table; if so, proceeding to step (30); otherwise,
proceeding to step (40);

(30) performing decay period computation on the hash
table;

(40) performing state update computation on the hash
table; and

(50) checking the hash table state and determining whether
the data in the corresponding L.BA is frequently updated.

Also referring to FIGS. 2 and 3, which are the flowchart
and the hash table contents of the aforementioned step (10),
step (10) of finding K corresponding counters in the hash
table through K hash functions based on the LBA correspond-
ing to the write request to the flash memory further includes
the following steps of:

(101) transmitting the LBA of the flash memory corre-
sponding to the write request as input to K independent hash
functions;

(102) each hash function generating an index based on the
input; and

(103) extracting K corresponding counters from the hash
table, based on the K indexes, and performing the processing
and identification.

The hash table is structured as shown in FIG. 3. The hash
table 100 includes N 4-bit counters 100(0)-100(N-1).

Referring now to FIGS. 4 and 5, which are the flowchart
and the hash table contents of the aforementioned step (30),
step (30) of performing decay period computation on the hash
table includes the following steps:

(301) right shifting all the counters in the hash table one bit;

(302) filling a zero in the most significant bit; and

(303) restoring the contents of the counters.

The above decay period computation is required to perform
after M write requests to the flash memory. That is, after step
(20) of checking whether M write requests have been pro-
cessing to determine a decay period computation is required.
This is to prevent counters 100(0)-100(N-1) from over-accu-
mulated to distort the identification of data characteristics.
FIG. 5 shows the state of counters 100(0)-100(N-1) during
the decay period computation. The decay period computation
otf'hash table 100 is not limited to the above steps (301)-(303).
Any equivalent numerical processing methods are also within
the scope of the present invention.

Referring to FIGS. 6 and 7, which are the flowchart and the
hash table contents of the aforementioned step (40), step (40)
of performing state update computation on the hash table
comprises the following steps of:

(401) sequentially checking K counters for overflowing
after adding 1; if so, proceeding to step (402); otherwise,
proceeding to step (403);

(402) the counter remaining unchanged; and

20

25

30

35

40

45

50

55

60

65

4

(403) the counter incremented by 1, and restored to the
counter.

Through steps (401)-(403), the contents of the hash table
100 can truly reflect the data update characteristics of the
corresponding LBA of flash memory. The state is as shown in
FIG. 7. Counters 100(6), 100(9), 100(N-3) of the hash table
100 are the three counters found by using the LBA of the flash
memory as the input to three hash functions. In the above
example, counter 100(6) is 1111,, which will overflow after
adding 1. Therefore, the contents of counter 100(6) remain
the same. On the other hand, the contents of counters 100(9),
100(N-3) are 0010,, 1100,, respectively. Therefore, both are
incremented by 1 and restored to the counters. As the arrow
sign indicated in FIG. 7, the final contents of counter 100(9)
and 100(N-3) are 00112 and 11012, respectively.

FIGS. 8 and 9 show the flowchart and the hash table con-
tents of the second embodiment of the aforementioned step
(40), respectively. The second embodiment further comprises
the steps of:

(404) sequentially checking K counters for overflowing
after adding 1; if so, proceeding to step (405); otherwise,
proceeding to step (406);

(405) right shifting all the counters in the hash table 1 bit
and filling a zero to the most significant bit; and

(406) the counter incremented by 1, and restored to the
counter.

Through steps (404)-(406), the contents of the hash table
100 can truly reflect the data update characteristics of the
corresponding LBA of flash memory. The state is as shown in
FIG. 9. Counters 100(6), 100(9), 100(N-3) of the hash table
100 are the three counters found by using the LBA of the flash
memory as the input to three hash functions. In the above
example, counter 100(6) is 1111,, which will overflow after
adding 1. Therefore, the contents of counter 100(0)-100(N-
1) are shifted 1 bit to the right and a zero is filled on the most
significant bit of all the counters. Then, the contents of
counters 100(6), 100(9), 100(N-3) are incremented by 1 and
restored. As the arrow sign indicated in FIG. 9, the final
contents of counter 100(6), 100(9) and 100(N-3) are 1000,,
0010, and 0111, respectively.

Referring to FIGS. 10 and 11, which are the flowchart and
the hash table contents of the aforementioned step (50), step
(50) of checking the hash table state and determining whether
the data in the corresponding [LBA is frequently updated
further includes the following steps of:

(501) checking the contents of the H most significant bits of
the corresponding counter being non-zero; if so, proceeding
to step (502); otherwise, proceeding to step (503);

(502) identifying the data in the corresponding [.LBA being
frequently updated; and

(503) identifying the data in the corresponding [.LBA being
infrequently updated.

Through steps (501)-(503), the contents of hash table 100
can provide the identification standard for the data update
characteristics of the corresponding . BA of flash memory. As
shown in FIG. 11, counters 100(6), 100(9), 100(N-3) of the
hash table 100 correspond to the addresses of the LBA ofthe
flash memory for the data update. After steps (401)-(403) or
steps (404)-(406), the contents of counters 100(6), 100(9) and
100(N-3) are 1111,, 0010, and 0100,, respectively. The H
most significant bits of the counters are checked for all-zero.
The H is not limited to any specific value. For example, when
His 2, the most significant bit and the second most significant
bit are checked. As seen in the above example, the first two
bits of counter 100(9) are all-zero, and therefore, the data in
the LBA of the flash memory corresponding to counters 100

US 7,461,233 B2

5
(6), 100(9), 100(N-3) are identified as being infrequently
updated, as shown by the arrow in FIG. 11.

While the invention has been described in connection with
what is presently considered to the most practical and pre-
ferred embodiment, it is to be understood that the invention is
not to be limited to the disclosed embodiment, but on the
contrary, is intended to cover various modifications and
equivalent arrangement included within the spirit and scope
of the appended claims.

What is claimed is:

1. A method of data characteristic identification for flash

memory, comprising the following steps:

(A) based on an LBA corresponding to a write request to
the flash memory, finding K corresponding counters in a
hash table through K hash functions, the step of finding
K corresponding counters including the steps of:

(Al) transmitting the LBA of the flash memory corre-
sponding to the write request as input to K indepen-
dent hash functions;

(A2) each hash function generating an index based on
the input; and

(A3) extracting K corresponding counters from the hash
table, based on K indexes, and performing the pro-
cessing and identification;

(B) determining whether to perform decay period compu-
tation on hash table; if so, proceeding to step (C); oth-
erwise, proceeding to step (D);

(C) performing decay period computation on the hash
table;

(D) performing state update computation on the hash table;
and

20

25

30

6

(E) checking the hash table state and determining whether

the data in the corresponding [.LBA is frequently updated.

2. The method as claimed in claim 1, wherein step (C)
further comprises the following steps: (C1) right shifting all
the counters in the hash table one bit; (C2) filling a zero in the
most significant bit; and (C3) restoring the contents of the
counters.

3. The method as claimed in claim 2, wherein the most
significant bit of step (C3) is the most significant bit of the
counter.

4. The method as claimed in claim 1, wherein step (D)
further comprises the following steps: (D1) sequentially
checking K counters for overflowing after adding 1; if so,
proceeding to step (D2); otherwise, proceeding to step (D3);
(D2) the counter remaining unchanged; and (D3) the counter
incremented by 1, and restored to the counter.

5. The method as claimed in claim 1, wherein step (D)
further comprises the following steps: (D4) sequentially
checking K counters for overflowing after adding 1; if so,
proceeding to step (DS); otherwise, proceeding to step (D6);
(DS5) right shifting all the counters in the hash table 1 bit and
filling a zero to the most significant bit; and (D6) the counter
incremented by 1, and restored to the counter.

6. The method as claimed in claim 1, wherein step (E)
further comprises the following steps: (E1) checking the con-
tents of the H most significant bits of the corresponding
counter being non-zero; if so, proceeding to step (E2); other-
wise, proceeding to step (E3); (E2) identifying the data in the
corresponding LBA being frequently updated; and (E3) iden-
tifying the data in the corresponding L. BA being infrequently
updated.

